Module also offered within study programmes:
General information:
Name:
Materials for energy systems and aeronautics
Course of study:
2013/2014
Code:
RMS-1-717-s
Faculty of:
Mechanical Engineering and Robotics
Study level:
First-cycle studies
Specialty:
-
Field of study:
Mechatronics with English as instruction languagege
Semester:
7
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
prof. zw. dr hab. inż. Czyrska-Filemonowicz Aleksandra (czyrska@agh.edu.pl)
Academic teachers:
prof. zw. dr hab. inż. Czyrska-Filemonowicz Aleksandra (czyrska@agh.edu.pl)
dr inż. Cempura Grzegorz (cempura@agh.edu.pl)
dr inż. Ziętara Maciej (zietara@agh.edu.pl)
dr inż. Rutkowski Bogdan (rutkowsk@agh.edu.pl)
dr inż. Majewska-Zawadzka Kinga (kinga@agh.edu.pl)
Module summary

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics Presentation,
Test,
Examination,
Activity during classes
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects Examination,
Activity during classes
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines Participation in a discussion,
Scientific paper,
Examination,
Activity during classes
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development Participation in a discussion,
Presentation,
Examination,
Activity during classes
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Others
Zaj. terenowe
Zaj. warsztatowe
E-learning
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics + - + - - - - - - - -
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects + - + - - - - - - - -
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines + - + - - - - - - - -
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development + - + - - - - - - - -
Module content
Lectures:

1. Problems of the energy and aeronautics industries – current status and development. Criteria for the selection of materials for the energy and aeronautics applications. Ecological and economical aspects of the materials’ selection.
2. Operation of the flow engines, steam- and gas turbines, gas turbine. Jet aircraft engines, engine types, development.
3. Materials for energy systems and aeronautics: classification, properties, microstructure and its stability during operation, life-time.
4. Materials for fossil fuel power plants: steels (bainitic, martensitic 9-12% Cr steels and austenitic) and Ni-base alloys.
5. Production of the clean energy: “zero-emission” steam power plants, membranes for CO2 and oxygen separation.
6. Wrought nickel-, iron- and cobalt-base superalloys. Cast nickel-base superalloys.
7. Single crystal (cast) nickel-base superalloys
8. Heat-resistant coatings: diffusion coatings, MCrAlY and TBC
9. Titanium and aluminum alloys for applications in the energy and aeronautics.
10. Structural intermetallics: microstructure, properties and possibility of their application in energy industry and aeronautics.
11. Metal- and ceramic matrix composites. Oxide dispersion strengthened (ODS) alloys.
12. Energy conversion and storage materials. Renewables.
13. Examples of the use of modern materials in power plants and aeronautics: steam turbine and boiler systems, blades and vanes, discs, combustion chambers, heat exchangers, propellers, combined gas – steam cycle with coal gasification, nuclear fusion reactors.

Laboratory classes:

1. Industrial steam and gas turbines, aircraft engines – construction and operation. Selection of materials for energy systems and aircraft components.
2. Steels (bainitic, martensitic and austenitic) for energy systems application.
3. “Zero-emission” steam power plants: membranes CO2 and oxygen separation.
4. Wrought nickel-base superalloys – microstructure and properties.
5. Single crystal (cast) nickel-base superalloys for gas turbine blades.
6. Heat resistant coatings: diffusion coatings, MCrAlY and TBC.
7. Titanium and aluminum alloys for energy and aeronautics.
8. Structural intermetallics for energy and aerospace applications.
9. Composites. Oxide dispersion strengthened (ODS) alloys.
10. Materials for nuclear reactors components. Tungsten and W-base alloys.

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 126 h
Module ECTS credits 5 ECTS
Examination or Final test 2 h
Realization of independently performed tasks 40 h
Contact hours 4 h
Participation in lectures 28 h
Participation in laboratory classes 14 h
Preparation of a report, presentation, written work, etc. 23 h
Preparation for classes 15 h
Additional information
Method of calculating the final grade:

0.5 * examination grade + 0.5 * laboratory grade

Prerequisites and additional requirements:

Basic knowledge of materials science, physics and chemistry

Recommended literature and teaching resources:

Ashby M., Jones D.: Materiały inżynierskie, WNT, Warszawa, 1996.
Blicharski M.: Inżynieria Materiałowa Stal, WNT, Warszawa 2004.
Blicharski M.: Wstęp do inżynierii materiałowej, WNT, Warszawa, 2003.
Cahn R. W., Haasen P., Kramer E.J.: Materials Science and Technology, VCH, New York, tom 8, 1992.
Cempura G.: Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperaturę, PhD Thesis, AGH Kraków, 2012.
Czyrska-Filemonowicz A., Dubiel B., Wasilkowska A.: Żaroodporne i żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków, Fotobit, Kraków, 2004.
Czyrska-Filemonowicz A., Ennis P.J., Zielińska-Lipiec A.: High Chromium Creep Resistant Steels for Modern Steam Power Plant, rozdział w „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii PAN, K. Swiątkowski (ed.), Wydawnictwo Naukowe AKAPIT, Kraków, 2002, 193-217.
Dubiel B.: Zmiany mikrostruktury podczas pełzania monokrystalicznych nadstopów niklu, habilitation thesis, AGH Kraków, 2011.
Hernas A. (ed.): Materiały i technologie do budowy kotłów nadkrytycznych i spalarni odpadów, Wyd. SITPH, Katowice, 2009.
Hernas A., Dobrzański J.: Trwałość i niszczenie elementów kotłów i turbin parowych, Wydawnictwo Politechniki Śląskiej, 2003.
Luque A., Hegedus S., (ed.): Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Ltd, 2003.
Proceedings Int. Charles Parsons Turbine Conference on Advanced Materials for 21st Century Turbines and Power Plant, published by The Institute of Materials, London, UK, A. Strang et al. (ed.): 7th Conference in Glasgow, 11-13.09.2007, 8th Conference in Portsmouth, 5-8.09.2011.
Proceedings Int. Conference on Materials for Advanced Power Engineering in Liege, Belgium, published as the Reports of Forschungszentrum Jülich, J. Lecomte-Beckers et al. (ed.): 8th Conference 17-21.09.2006; 9th Conference, 27-29.09.2010., 10th Conference 14–17.09.2014
Nelson J.: The Physics of Solar Cells. Imperial College Press, 2003.
Reed R. C.: The Superalloys. Fundamental and applications, Cambridge University Press, 2006.
Rębiasz B., Orchel-Szeląg A., Czyrska-Filemonowicz A.: NewMat project – the answer to challenges related to the energy market development, Wydawnictwo Naukowe AKAPIT, Kraków 2014.
Rutkowski B.: Mechanical properties and microstructure of dense ceramic membranes for oxygen separation in zero-emission power plants, PhD thesis, AGH Kraków-RWTH Aachen, 2012.
Wenham S., Green M. (ed): Applied Photovoltaics. 2nd ed. Routledge, 2006.
Wosik J.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2002.
Zielińska-Lipiec A.: Analiza stabilności mikrostruktury modyfikowanych stali martenzytycznych 9% Cr w procesie wyżarzania i pełzania, habilitation thesis, AGH Kraków, 2005.
Zielińska-Lipiec A.: Stale stosowane w energetyce konwencjonalnej i jądrowej – wybrane zagadnienia, in Press
Ziętara M.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2011.

Scientific publications of module course instructors related to the topic of the module:

Rozprawy doktorskie i monografie:
1. K. Bryła – Zmiany mikrostruktury podczas pełzania nowej stali martenzytycznej na wirniki
turbin parowych, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH
Kraków, 2004
2. B. Rutkowski – Mechanical properties and microstructure of dense ceramic membranes for
oxygen separation in zero-emission power plants, (promotorzy: prof. T. Beck i prof. A.
Czyrska-Filemonowicz i prof. T. Beck), AGH i RWTH Aachen, 2012
3. A. Czyrska-Filemonowicz, P.J. Ennis, A. Zielińska-Lipiec – High Chromium Creep
Resistant Steels for Modern Steam Power Plant, rozdział w książce „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii Polskiej Akademii Nauk, K. Swiątkowski (red.), AKAPIT, Kraków, 2002, s. 193-217
4. A. Czyrska-Filemonowicz, B. Dubiel, A. Wasilkowska – monografia p.t. „Żaroodporne i
żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków”, Wyd. Fotobit, 2004,
s.1-124
5. B. Rębiasz, A. Orchel-Szeląg, A. Czyrska-Filemonowicz – monografia p.t. “NewMat project- the answer to challenges related to the energy market development”, Wydawnictwo Naukowe Akapit, Kraków 2014, s. 1-107
6. G. Cempura, Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperature, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2012.
7. M. Ziętara – Microstructure stability of second and fourth generation single crystal nickel-base superalloys during high temperature creep deformation, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2011
8. J. Wosik – Evaluation of the long-term microstructural stability of selected Ni-base superalloys, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2002.
Artykuły:
1. 4. J. Wosik, H. J. Penkalla, A. Czyrska-Filemonowicz – Waspaloy – stop na wirniki
nowoczesnych turbin parowych, Inżynieria Materiałowa, 4 (2002)163-167
2. G. Cempura, A. Kruk, C. Thomser, M. Wirtz, A. Czyrska-Filemonowicz – Microstructure
characterization of tungsten based alloys for fusion application, Archives of Metallurgy
and Materials, 58(2013)473-476
3. B. Rutkowski, J. Malzender, T. Beck, A Czyrska-Filemonowicz- Membrany dla
nowoczesnych elektrowni węglowych wytwarzających czystą energię, Hutnik-
Wiadomosci Hutnicze, 80(2013)274-279
1. A. Czyrska-Filemonowicz, B. Dubiel, M. Ziętara, A. Cetel – Development of single crystal Ni-based superalloys for advanced aircraft turbine blades”, Inżynieria Materiałowa, 3-4(2007)128-133.
2. G. Cempura, H. J. Penkalla, F. Schubert, A. Czyrska-Filemonowicz – Low Cycle Fatigue behavior and microstructure of 3rd generation TiAl based alloy, Inżynieria Materiałowa,175/3(2010)658-661.
3. M. Ziętara, A. Kruk, A. Gruszczyński, A. Czyrska-Filemonowicz – FIB-SEM tomography of 4th generation PWA 1497 superalloy, Materials Characterisation, 87(2014)143-148; JCR.
4. M. Zietara, A. Cetel, A. Czyrska-Filemonowicz: „Microstructure Stability of 4th Generation Single Crystal Superalloy, PWA 1497, during High Temperature Creep Deformation”, Materials Transactions, Vol. 52, No.03, 2011, s.336-339.

Additional information:

None