Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Thermodynamics
Tok studiów:
2013/2014
Kod:
RMS-2-215-MD-s
Wydział:
Inżynierii Mechanicznej i Robotyki
Poziom studiów:
Studia II stopnia
Specjalność:
Mechatronic Design
Kierunek:
Mechatronics with English as instruction languagege
Semestr:
2
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Osoba odpowiedzialna:
prof. dr hab. Janik Jerzy (janikj@agh.edu.pl)
Osoby prowadzące:
prof. dr hab. Janik Jerzy (janikj@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student will acquire a general knowledge of thermodynamics, including the laws of thermodynamics, definitions of state functions, and chemical and phase equilibria. MS2A_W01 Wykonanie ćwiczeń,
Egzamin,
Aktywność na zajęciach
M_W002 Student will gain fundamental knowledge about work, heat, internal energy, ethalpy, entropy, Gibbs and Helmholtz energies as well as chemical and phase equilibria stressing their application potentials. MS2A_W01 Wynik testu zaliczeniowego,
Wykonanie ćwiczeń,
Egzamin,
Aktywność na zajęciach
Umiejętności
M_U001 Student will be able to perform all essential calculations in the area of the laws of thermodynamics as applied in various practical applications. MS2A_U07, MS2A_U05 Wynik testu zaliczeniowego,
Wykonanie ćwiczeń,
Egzamin,
Aktywność na zajęciach
Kompetencje społeczne
M_K001 Student understands the need for continuous learning/stydying various aspects of thermodynamics as of science that reflects the fundamental laws of Nature. MS2A_U06, MS2A_K02 Udział w dyskusji,
Egzamin,
Aktywność na zajęciach
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Student will acquire a general knowledge of thermodynamics, including the laws of thermodynamics, definitions of state functions, and chemical and phase equilibria. + + - - - - - - - - -
M_W002 Student will gain fundamental knowledge about work, heat, internal energy, ethalpy, entropy, Gibbs and Helmholtz energies as well as chemical and phase equilibria stressing their application potentials. + + - - - - - - - - -
Umiejętności
M_U001 Student will be able to perform all essential calculations in the area of the laws of thermodynamics as applied in various practical applications. - + - - - - - - - - -
Kompetencje społeczne
M_K001 Student understands the need for continuous learning/stydying various aspects of thermodynamics as of science that reflects the fundamental laws of Nature. + + - - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. The thermodynamic concept of temperature or the zeroth law of thermodynamics

    State of thermal equilibrium. Equations of state. Ideal gas laws and the ideal gas temperature scale. Dalton’s law for ideal gas mixtures. Real gases and the virial equation. P-V-T
    relationships for a one-component system. Triple point and critical point. The Van der Waals equation and the compressibility factor for gases.

  2. Second law of thermodynamics – spontaneity and reversibility of a process

    Spontaneous and non-spontaneous changes. Carnot cycle. Thermodynamic temperature. Expressions of the second law. The fundamental equation for a closed system. Entropy for reversible and irreversible processes. Entropy of mixing ideal gases. Entropy and statistical probability. Calorimetric determination of entropies.

  3. Chemical equilibrium

    General equilibrium expression. Equilibrium constants expressions and their determination. Thermodynamics of a simple gas reaction. Effect of pressure, temperature, and initial composition on equilibrium constants. Homogeneous and heterogeneous chemical reactions.

  4. Phase equilibria

    One-component systems. First- and second-order phase transitions. The Clapeyron equation. The Clausius-Clapeyron equation. Phase rule. Multi-component systems. Thermodynamic
    properties of ideal liquid mixtures. Vapor pressure of nonideal mixtures. Raoult’s law. Henry’s law. Activity coefficients. Examples of phase diagrams.

  5. Introduction – basic properties and definitions

    SI and non-SI base units. Thermodynamics vs. kinetics. Definition of a thermodynamic system. Open and isolated, homogeneous and heterogeneous systems. Extensive and intensive properties of a system. Standard states and state variables. Equilibrium as a definite state.

  6. First law of thermodynamics or the law of conservation of energy

    Definitions and interrelations of work, internal energy, and heat. Joule’s experiments. The first law of thermodynamics and internal energy. Various kinds of work. Joule-Thomson expansion. Heat capacities Cp and Cv. Adiabatic processes with gases. Thermochemistry: exothermic and endothermic reactions. Enthalpy of formation. Temperature dependence of enthalpy.

  7. The third law of thermodynamics or the value of entropy at absolute zero

    Standard reaction entropies. Expressions of the third law. Entropy changes for phase changes and chemical reactions – examples.

  8. Helmholtz energy, A, and Gibbs energy, G

    Legendre transforms. Definitions of the Gibbs energy and Helmholtz energy. Thermodynamic functions for a closed systems. Thermodynamic equations of state. Effect of temperature and pressure on the Gibbs energy. Fundamental
    equations for open systems. The additivity relation for the Gibbs energy. Partial molar quantities. The activity.

Ćwiczenia audytoryjne:
  1. The thermodynamic concept of temperature or the zeroth law of thermodynamics

    Pressure and molar volume for ideal and real gases; comparison of the ideal gas law, virial equation, and the van der Waals equation.

  2. The first law of thermodynamics or the law of conservation of energy

    Work of compression/expansion of a gas. Changes in internal energy and enthalpy on heating. Work and internal energy changes in adiabatic processes. Standard enthalpy changes for
    reactions. Enthalpy of reactions at different temperatures. Calculations of bond energies.

  3. The second law of thermodynamics; spontaneity and reversibility of a process; the third law of thermodynamics or the value of entropy at absolute zero

    Changes in entropy of a gas in various processes (e.g. vaporization, heating at constant and variable pressures). Examples of entropy changes in irreversible processes via a reversible path from the initial state to the final state. Calculations of entropy of mixing. Determination of the entropy of a substance relative to its entropy at 0 K.

  4. Helmholtz energy, A and Gibbs energy, G

    Derivation of Maxwell relations. Calculations of molar thermodynamic quantities ∆U, ∆H, ∆G, ∆A, and ∆S for ideal gas expansion and gas mixing. Molar entropy and internal energy of
    isothermal expansion of a van der Waals gas. Activity of a substance at different pressures.

  5. Introduction; basic properties and definitions

    Interconversion of SI and non-SI base units. Values of the gas constant R. Mole fractions and partial pressures.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 130 godz
Punkty ECTS za moduł 5 ECTS
Udział w wykładach 28 godz
Udział w ćwiczeniach audytoryjnych 14 godz
Samodzielne studiowanie tematyki zajęć 45 godz
Przygotowanie do zajęć 43 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

Average of two examination test scores.

Wymagania wstępne i dodatkowe:

Prior course in mathematics (especially,concepts/calculations of integrals and differentials).

Zalecana literatura i pomoce naukowe:

1. Robert A. Alberty, Robert J. Silbey Physical Chemistry, Second Edition; John Wiley & Sons, Inc.,New York 1996.
2. Robert A. Alberty, Robert J. Silbey Solutions Manual to Accompany Physical Chemistry, Second Edition; John Wiley & Sons, Inc., New York 1996.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Nie podano dodatkowych publikacji

Informacje dodatkowe:

Brak