Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
CAD/CAE Systems
Tok studiów:
2013/2014
Kod:
RME-1-723-s
Wydział:
Inżynierii Mechanicznej i Robotyki
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Mechatronika
Semestr:
7
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Osoba odpowiedzialna:
Paszyński Maciej (paszynsk@agh.edu.pl)
Osoby prowadzące:
Paszyński Maciej (paszynsk@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Knows the principles of the finite difference method Zaliczenie laboratorium
M_W002 Knows the principles of the finite element method Zaliczenie laboratorium
M_W003 Knows basic design principles of Computer Aided Design systems Zaliczenie laboratorium
M_W004 Knows basic principles of Computer Aided Engineering systems Zaliczenie laboratorium
M_W005 Knows how to model geometry using B-splines within CAD systems Zaliczenie laboratorium
Umiejętności
M_U001 Is able to solve model engineering problem using finite difference method and CAE system Zaliczenie laboratorium
M_U002 Is able to solve model engineering problem using finite element method and CAE system
Kompetencje społeczne
M_K001 Knows basic principles of modeling geometries with B-splines within CAD systems Zaliczenie laboratorium
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Knows the principles of the finite difference method + - + - - - - - - - -
M_W002 Knows the principles of the finite element method + - + - - - - - - - -
M_W003 Knows basic design principles of Computer Aided Design systems + - + - - - - - - - -
M_W004 Knows basic principles of Computer Aided Engineering systems + - + - - - - - - - -
M_W005 Knows how to model geometry using B-splines within CAD systems + - + - - - - - - - -
Umiejętności
M_U001 Is able to solve model engineering problem using finite difference method and CAE system + - + - - - - - - - -
M_U002 Is able to solve model engineering problem using finite element method and CAE system + - + - - - - - - - -
Kompetencje społeczne
M_K001 Knows basic principles of modeling geometries with B-splines within CAD systems - - - - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. Introduction to Computer Aided Design and Computer Aided Engineering (2 hours)

    CAD/CAE market. Basic steps of the engineering process: Modeling of geometry in CAD system, modeling of objects by B-splines and NURBS, generation of material data for particular objects, meshing for CAE computations, discretization by using finite difference or finite element method, solution of the system of linear equations by direct or iterative solver algorithm, analysis of the accuracy of the simulation, mesh adaptation, postprocessing

  2. Basic methods of Computer Aided Engineering: Finite element method (2 hours)

    Introduction to finite element method. Exemplary finite element method for heat transfer problem. Derivation of the formulation in 2D. Discretization methods. Interfacing with the solver algorithm.

  3. Mesh adaptation algorithms (2 hours)

    Introduction to the mesh adaptation algorithm. Automatic algorithm for hp adaptation. Design principles for object-oriented adaptive CAD/CAE systems. Exponential convergence of the numerical error with respect to the mesh size for the hp adaptive algorithm.

  4. Direct solvers utilized in CAD/CAE systems (2 hours)

    Mesh based solvers utilized in CAD/CAE systems. Multi-frontal solver algorithm and its applications. Parallel version of the multi-frontal solver algorithm for shared-memory and distributed memory architectures. Computational costs of the multi-frontal solvers.

  5. Summary of the lecture (2 hours)

    Comparison of computational costs of adaptive finite element method and isogeomtric finite element method, for sequential and parallel, distributed and shared memory simulations.

  6. Introduction to Computer Aided Design: modeling of geometry with B-splines and NURBS (2 hours)

    Basic principles of modeling of geometry with B-splines and NURBS. Know vectors, B-splines basis functions. Idea of Non-Uniform Rational B-splines (NURBS). Examples of modeling two and three dimensional objects.

  7. Introduction to Isogeometric analysis (2 hours)

    Utilization of the same basis functions for modeling of geometry and for engineering simulations. Integration of the engineering simulations in CAE systems. Computational costs of isogeometric analysis.

  8. Basic methods of Computer Aided Engineering: Finite difference method (1 hour)

    Introduction to finite difference method. Exemplary finite difference method for heat transfer problem. Derivation of the formulation in 1D, 2D and 3D. Discretization methods.
    Interfacing with the solver algorithm.

Ćwiczenia laboratoryjne:
  1. Installation of the virtual machine with MUMPS solver, compilations and linking of libraries (2 hours)

    Students download, compile and link the CAE environment in virtual linux machine.

  2. Implementation and execution of one dimensional finite difference method (2 hours)

    Student write a simple C code in virtual machine with one dimensional finite element method. They compile and link to MUMPS solver.

  3. Implementation and execution of two dimensional finite difference method (2 hours)

    Student write a simple C code in virtual machine with two dimensional finite element method. They compile and link to MUMPS solver. This is an extension of the previous lab for more complicated case.

  4. One dimensional hp adaptive finite element method (2 hours)

    Students install and compile one dimensional hp adaptive finite element method code and learn how to solve a prescribed engineering problem using the 1D code.

  5. Modeling geometries for two dimensional finite element method (2 hours)

    Students learn how to prepare an input file with geometry description for two dimensional hp adaptive finite element method.

  6. Comparison of convergence of h adaptive and p adaptive method in 2D hp-FEM (2 hours)

    Students play with two dimensional hp adaptive system and compares convergence methods for simple engineering problems.

  7. Solving challenging problems with CAD/CAE systems (2 hours)

    Students will implement some aspects of the model and execute the hp adaptive finite element method code for solution of the Stokes flow problem.

  8. Computational costs and memory usage of the solvers (1 hour)

    Students will experiment with limitations of the method by increasing the problem size and measuring execution times and memory usage of the solver (1 hours)

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 100 godz
Punkty ECTS za moduł 4 ECTS
Udział w wykładach 30 godz
Udział w wykładach 30 godz
Przygotowanie do zajęć 30 godz
Samodzielne studiowanie tematyki zajęć 10 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

1. It is necessary to obtain positive average grade from the labs
2. Final grade depends on the average grade obtained from the labs:
if sr>4.75 then OK:=5.0 else
if sr>4.25 then OK:=4.5 else
if sr>3.75 then OK:=4.0 else
if sr>3.25 then OK:=3.5 else OK:=3

Wymagania wstępne i dodatkowe:

Basics of C/C++ programming
Basics of linear algebra
Basics of PDE

Zalecana literatura i pomoce naukowe:

Cottrell, J. Austin; Thomas J.R. Hughes, Yuri Bazilevs (October 2009). Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons. ISBN 978-0-470-74873-2
Demkowicz L. Computing with hp-Adaptive Finite Elements. Vol. 1Chapmann & Hall / CRC Press 2007

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1 Maciej Paszynski, Jason Kurtz, Leszek Demkowicz, Parallel Fully Automatic hp-
Adaptive 2D Finite Element Package. Computer Methods in Applied Mechanics and Engineering, 195 (2006) 711-741.
2 Maciej Paszynski, Leszek Demkowicz, Parallel Fully Automatic hp-Adaptive 3D Finite Element Package. Engineering with Computers, 22 (2006) 255-276.
3 Pawel Matuszyk, Maciej Paszynski, Fully automatic hp adaptive finite element method for the Stokes problem in two dimensions. Computer Methods in Applied Mechanics and Engineering, 197 (2008) 4549-4558.
4 Nathan Collier, David Pardo, Lisandro Dalcin, Maciej Paszynski, Victor Calo, The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers. Computer Methods in Applied Mechanics and Engineering, 213-216 (2012) 353-361.
5 Maciej Paszynski, Victor Calo, David Pardo, A direct solver with reutilization of previously-computed LU factorizations for h-adaptive finite element grids with point singularities. Computers and Mathematics with
Applications, 65, 8 (2013) 1140-1151.

Informacje dodatkowe:

Demkowicz L. Kurtz J., Pardo D., Paszyński M., Rachowicz W., Zdunek A., Computing with hp-Adaptive Finite Elements. Vol. 2: Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapmann & Hall / CRC Press 2007