Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Electric machines and equipment in electric power system
Tok studiów:
2013/2014
Kod:
EEL-2-103-SG-s
Wydział:
Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Poziom studiów:
Studia II stopnia
Specjalność:
Smart Grids Technology Platform
Kierunek:
Elektrotechnika
Semestr:
1
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
dr inż. Dybowski Paweł (dybowski@agh.edu.pl)
Osoby prowadzące:
dr inż. Dybowski Paweł (dybowski@agh.edu.pl)
dr inż. Lerch Tomasz (lerch@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student knows the principles and methods of identifying parameters of mathematical models of electromechanical components of power system, including synchronous generators. EL2A_K01, EL2A_U02, EL2A_W01, EL2A_U08 Wykonanie projektu
M_W002 The student knows the circuit models of electrical machines and methods for their identification, including the great power synchronous generators. EL2A_W11 Wynik testu zaliczeniowego
M_W003 Student knows the simplified mathematical models of synchronous generators for simulating power system transients. EL2A_W12, EL2A_W11 Wynik testu zaliczeniowego
M_W004 Student knows how to choose the right degree of simplification of the mathematical model of synchronous generators for the considered problem. EL2A_W06 Wynik testu zaliczeniowego
M_W005 Student knows the structure and properties of three-phase three-winding transformers and the relationship between the parameters of the equivalent circuit EL2A_W11 Wynik testu zaliczeniowego
M_W006 Student knows the impact of non-linear magnetization characteristics on current and voltage of transformer in steady state and transient. EL2A_W07 Wynik testu zaliczeniowego
M_W007 Student knows the basic sources and effects of the presence of harmonics and negative sequence of voltage and current in the power grid. EL2A_W12, EL2A_W11 Wynik testu zaliczeniowego
Umiejętności
M_U001 Student understands the meaning of input coordinate transformation describing the state of the electromechanical system and can select the appropriate coordinates according to the considered problem. EL2A_U06, EL2A_U08 Sprawozdanie
M_U002 Student is able to save the dynamic equations of the drive system with special reference to the electromechanical transducer, the mechanical part and the parameters of the power system for the evaluation of impact of this system back to the power system. EL2A_U06, EL2A_U08 Sprawozdanie
M_U003 Student can prepare a program for numerical integration of equations of the electromechanical system, and then verify and develop the results of the calculations and draw conclusions. EL2A_U06, EL2A_U08, EL2A_U09 Sprawozdanie
M_U004 Student is able to estimate the impact of the presence of rotating electrical machines on the network fault currents on the basis of catalog data of the machines. EL2A_U06, EL2A_U07, EL2A_U08 Sprawozdanie
M_U005 Student can evaluate (in the basic range) the effect of disturbances in the grid on the work of distributed sources of electricity. EL2A_U08, EL2A_U09 Sprawozdanie
Kompetencje społeczne
M_K001 Student knows the principles and methods of identifying parameters of mathematical models of electromechanical components of power system, including synchronous generators. EL2A_K01 Wykonanie projektu
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Student knows the principles and methods of identifying parameters of mathematical models of electromechanical components of power system, including synchronous generators. + - - - - - - - - - -
M_W002 The student knows the circuit models of electrical machines and methods for their identification, including the great power synchronous generators. + - - - - - - - - - -
M_W003 Student knows the simplified mathematical models of synchronous generators for simulating power system transients. + - - - - - - - - - -
M_W004 Student knows how to choose the right degree of simplification of the mathematical model of synchronous generators for the considered problem. + - - - - - - - - - -
M_W005 Student knows the structure and properties of three-phase three-winding transformers and the relationship between the parameters of the equivalent circuit + - - - - - - - - - -
M_W006 Student knows the impact of non-linear magnetization characteristics on current and voltage of transformer in steady state and transient. + - - - - - - - - - -
M_W007 Student knows the basic sources and effects of the presence of harmonics and negative sequence of voltage and current in the power grid. + - - - - - - - - - -
Umiejętności
M_U001 Student understands the meaning of input coordinate transformation describing the state of the electromechanical system and can select the appropriate coordinates according to the considered problem. - - + - - - - - - - -
M_U002 Student is able to save the dynamic equations of the drive system with special reference to the electromechanical transducer, the mechanical part and the parameters of the power system for the evaluation of impact of this system back to the power system. - - + - - - - - - - -
M_U003 Student can prepare a program for numerical integration of equations of the electromechanical system, and then verify and develop the results of the calculations and draw conclusions. - - + - - - - - - - -
M_U004 Student is able to estimate the impact of the presence of rotating electrical machines on the network fault currents on the basis of catalog data of the machines. - - + - - - - - - - -
M_U005 Student can evaluate (in the basic range) the effect of disturbances in the grid on the work of distributed sources of electricity. - - + - - - - - - - -
Kompetencje społeczne
M_K001 Student knows the principles and methods of identifying parameters of mathematical models of electromechanical components of power system, including synchronous generators. + - - - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
Lectures

1. The principle of working of the energy system: structure, energy converters, transmission and distribution of electrical energy. The methods of power generation: conventional and renewable energy systems (2 hours).
2. General rules for the formulation of equations of the dynamics of electromechanical systems: the principle of least action of Hamilton, the Lagrange function, the Euler-Lagrange equations. Natural frequency of mechanical system, electrical torque, centrifugal twisting moments in a rotating mechanical system, damping materials (2 hours).
3. The methods of electricity generation: conventional and renewable energy systems. Electromagnetic compatibility. Limits for harmonic current emissions in the energy systems. Higher harmonics in voltage in the power supply networks from: the load of non-linear magnetic circuits, rotating electrical machines, converters, electrothermics load. Influence of rotating electrical machines on fault currents in the network (2 hours).
4. Energy quality: safety using, monitoring of loads, methods to improve power quality. Sources of harmonic voltages and currents in the power system. Voltage sags. Mathematical models of alternating current electrical machines and transformers, equivalent parameters of the power grid in mathematical models (2 hours).
5. Disturbances in the power system: definitions, methods of detection, measurement devices. Monitoring of the energy system: methods, controlled values, monitoring systems. The consequences of the presence of negative sequence voltages in the network. Effects of rotating electrical machines for fault currents in the network (2 hours).
6. Transformer no-load current, free and forced magnetizing, preventing deformation of the voltage at a forced magnetization. Switching-on currents of the transformer, the impact load, the method of limiting the switching-on currents. Three-phase transformer circuits connections (2 hours).
7. Three-winding transformer: specificity of three magnetically coupled coils, equivalent circuit, the parameters, the three-winding transformer mathematical model, the parameters of the model, parameter identification. The use of specific properties of the three-windings transformer to reducing the impact of loads on the work of network, the economic considerations (3 hours).
8. Work transformer with unbalanced loads, correction factors, reducing the effects of unbalanced loads by transformers D/y0 and Y/z0 (2 hours).
9. Identification by measurements the mathematical models of rotating machines based on measurements in the steady state and on the basis of electrical waveforms in dynamic states (3 hours).
10. Synchronous machine. Identification based on measurements the parameters of mathematical models based on the assumption of quasi-stationary electric waveforms in dynamic states. Modelling of damping action of the solid-steel rotor of non-salient pole generator, circuit model parameters (2 hours).
11. Induction machine. Identification of the parameters of the mathematical model. Induction machine work as generator: the principle of operation, autonomous generation mode, the self-excitation process (2 hours).
12. Simplified models of synchronous generators for transients states modelling in power system, hybrid models, the parameters of simplified models, different steps of simplification. Equivalent damping coefficients (3 hours).
13. Double fed induction machine as a generator of wind power, principles and methods of control, dynamic properties, work in the energy system in terms of disturbances (3 hours).

Ćwiczenia laboratoryjne:
Laboratory exercises

1. Introduction to the laboratory. Issue and discuss topics of computational projects. (2 hours).
2. Unbalanced load of three-phase transformer in various systems connections (identification of parameters, measurements and calculations, presentation of the results) (5 hours).
3. Identification of synchronous machine parameters (measurements and calculations) (4 hours).
4. Operation of a synchronous machine in the external asymmetry conditions (measurements and calculations, presentation of the results) (5 hours).
5. Self-excited asynchronous generator (measurements and calculations, presentation of the results) (5 hours).
6. Interaction of receivers coupled by the source impedance (measurements and calculations) (3 hours).
7. Doubly fed induction generator (measurements and calculations, presentation of the results) (5 hours).
8. Project presentation (1 hour).

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 130 godz
Punkty ECTS za moduł 5 ECTS
Udział w wykładach 30 godz
Samodzielne studiowanie tematyki zajęć 30 godz
Udział w ćwiczeniach laboratoryjnych 30 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 15 godz
Wykonanie projektu 20 godz
Egzamin lub kolokwium zaliczeniowe 5 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

1. To get a positive final assessment: is necessary to obtain a positive assessment of the measuring laboratory and pass two tests of the topics presented in lectures.
2. Final mark (OK) is calculated from the assessment of the lecture (two tests: Ow1 and Ow2) and assessment of the laboratory exercises (Ol), obtained in all terms.
3. The basis for determining the final assessment (OK) is the value Wl, which is calculated by the formula: Wl = 0,25*Ow1 + 0,25*Ow2 + 0,5*Ol.
4. Final assessment is determined in accordance with the principle set out in section 4, paragraph 4 of the Studies Regulations at AGH, depending on the numerical value of Wl.

Wymagania wstępne i dodatkowe:

Basic knowledge of the theory of electrical machines and electromechanical energy conversion principles, computer skills, knowledge of the basics of MATLAB or similar program.

Zalecana literatura i pomoce naukowe:

1. Skwarczyński J., Tertil Z.: Maszyny elektryczne, cz.I, teoria. Wydawnictwa AGH, Kraków 1995, skrypt nr 1430
2. Skwarczyński J., Tertil Z.: Maszyny elektryczne, cz.II, teoria. Wydawnictwa AGH, Kraków 1997, skrypt nr 1510
3. Paszek W.: Stany nieustalone maszyn elektrycznych prądu przemiennego. Wyd. Helion, 1998
4. Jezierski E.: Transformatory. WNT, Warszawa 1983
5. Machowski J., Bialek J. W., Bumby J. R.: Power System Dynamics – Stability and Control, John Wiley & Sons, Ltd. 2008
6. Boldea I.: Synchronous Generator, Taylor & Francis 2006
7. IEC Standard 61000-3-2, IEC Standard 61000-3-4, IEC Standard 60364
8. Electric Power Engineering Handbook: ELECTRIC POWER GENERATION, TRANSMISSION, and DISTRIBUTION, Edited by Leonard L. Grigsby, CRC Press LLC 2001
9. John J. Winders, Jr. – Power Transformers Principles and Applications, Marcel Dekker, Inc. 2002

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Nie podano dodatkowych publikacji

Informacje dodatkowe:

-