Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
X-ray applications in biomedicine
Tok studiów:
2013/2014
Kod:
EIB-2-206-HC-s
Wydział:
Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Poziom studiów:
Studia II stopnia
Specjalność:
Emerging Health Care Technologies
Kierunek:
Inżynieria Biomedyczna
Semestr:
2
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
prof. dr hab. inż. Lankosz Marek (Marek.Lankosz@fis.agh.edu.pl)
Osoby prowadzące:
dr inż. Furman Leszek (Leszek.Furman@fis.agh.edu.pl)
dr inż. Samek Lucyna (Lucyna.Samek@fis.agh.edu.pl)
prof. dr hab. inż. Lankosz Marek (Marek.Lankosz@fis.agh.edu.pl)
prof. nadzw. dr hab. inż. Szczerbowska-Boruchowska Magdalena (boruchowska@fis.agh.edu.pl)
dr Ostachowicz Beata (Beata.Ostachowicz@fis.agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student has knowledge about physical phenomenon’s and instrumentation used in modern methods of medical therapy and diagnosis with the use of X-rays IB2A_W05, IB2A_W08, IB2A_W01 Aktywność na zajęciach,
Egzamin,
Udział w dyskusji
M_W002 Student know performance and technical parameters of methods applied in therapy and diagnosis IB2A_W08, IB2A_W04 Aktywność na zajęciach,
Egzamin,
Udział w dyskusji
Umiejętności
M_U001 Student is able applied computer simulations and numerical methods to solve selected problems related to applications of physical methods in therapy and medical diagnosis IB2A_U08, IB2A_U07, IB2A_U10, IB2A_U04, IB2A_U03 Kolokwium,
Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium
M_U002 Student is able to raise information from literature, evaluate results of measurements, prepare report from experiments, and prepare multimedia presentation of IB2A_U05, IB2A_U01, IB2A_U04, IB2A_U03 Prezentacja,
Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium
Kompetencje społeczne
M_K001 Student is able to cooperate in team, to become involve in discussion, evaluate results of work partners, is able to express personal arguments. Student understands the need for improving the qualifications and competence IB2A_K03, IB2A_K04 Aktywność na zajęciach,
Egzamin,
Udział w dyskusji,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych,
Zaangażowanie w pracę zespołu
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Student has knowledge about physical phenomenon’s and instrumentation used in modern methods of medical therapy and diagnosis with the use of X-rays - - - - - - - - - - -
M_W002 Student know performance and technical parameters of methods applied in therapy and diagnosis - - - - - - - - - - -
Umiejętności
M_U001 Student is able applied computer simulations and numerical methods to solve selected problems related to applications of physical methods in therapy and medical diagnosis - - - - - - - - - - -
M_U002 Student is able to raise information from literature, evaluate results of measurements, prepare report from experiments, and prepare multimedia presentation of - - - - - - - - - - -
Kompetencje społeczne
M_K001 Student is able to cooperate in team, to become involve in discussion, evaluate results of work partners, is able to express personal arguments. Student understands the need for improving the qualifications and competence - - - - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. X-ray optics -1h

    Collimators and focusing systems, multilayer mirrors, capillary optics-transport of X-ray in capillaries, types of capillary lenses, refractive lenses, zone (Fresnel) lenses, curved crystals

  2. Investigation of the structure of bio-crystals, nanocrystals and clusters – 2h

    Introduction to protein structure measurements,X-ray difraction, principles od small angle x-ray scattering,investigation of structures of proteins, investigation of biochemical processes and chemical reaction kinetic

  3. Computerized tomography physics and instrumentation -1h

    Physics of x-rays, principles of computed tomography, CT scanners, multislice helical CT systems, CT image reconstruction, new developments, electron beam computerized tomography, new developments

  4. X-ray tomography in medical diagnostic -3h

    Two-energy tomography, micro-tomography, quantitative CT, image quality, artifacts in CT, radiation safety,quality control. electron beam computerized tomography.

  5. History of X-rays in medicine for therapy and diagnosis -1h

    Introduction and basic principles

  6. Interaction of X-ray with matter- 2h

    X-ray polarization, photoelectric absorption, scattering, optical properties of X-ray, refraction of X-ray, total reflection

  7. Oncological therapy with the use of X-rays – 2h

    Teleradiotherapy, stereotactic radiosurgery, electronics X-ray sources for brachytherapy, X-ray needle, techniques of intraoperative brachytherapy, radiation safety. radiation dose

  8. Phase contrast imaging and tomography in life sciences-2h

    Application in oncological diagnostics, 3D imaging of living insects, application in epidemiology.

  9. X-ray fluorescence application in biomedical research and in vivo medical diagnostic -2h

    Instrumentation, “in vivo” analysis of toxic elements, applications in medical diagnosis

  10. Production of X-ray -2h

    X-ray tubes-new developments, plasma X-ray sources, synchrotrons, X-ray free electron laser- XFEL

  11. Principles of X-ray microscopy and practical application in medical diagnostic and biomedical researches -3h

    Contact microscope, reflex microscope, projection microscope, and transmission scanning microscope, X-ray holography, investigation of biomedical samples, and investigation of living cells

  12. X-ray fluorescence elemental chemical macro/micro/nano imaging with the use of synchrotron radiation and conventional X-ray sources -4h

    Instrumentation, sample preparation, cells pharmacology, bio modulators in neurodegeneration, cancerogenesis and ageing, investigation of biochemical processes, application in histopathology

  13. Total reflection X-ray fluorescence analysis of tissues and human body fluids – 2h

    Instrumentation, ltra-trace elemental analysis, analysis of toxic elements in human tissues and body fluids, application in environmental monitoring and assessment

  14. Synchrotron radiation in biomedical research -2h

    Radiotherapy with the use of micro beams, photon activation radiotherapy, angiography, multi-energy X-ray computed tomography

  15. Principles of X-ray emission and X-ray absorption spectroscopy-2h

    Characteristic X-ray, satellite lines, chemical shift, X-ray Absorption Near Edge Structure, Extended X-Ray Absorption Fine Structure, oxidation state, chemical environment of the absorbing atom.

Ćwiczenia laboratoryjne:
  1. XRF microanalysis

    student is able to prepare samples for analysis
    student is able to set-up spectrometer for measurements
    student is able to perform measurements
    student is able to prepare maps of elements

  2. Test
  3. Indroductory exercise -1h

    Familiarize students with safety regulations related with use of X-rays sources and biological samples.

  4. Ultratrace elemental analysis with the use of TXRF method- 3h

    student is able to prepare samples of tissues and body fluids for analysis
    student is able to set-up X-ray spectrometer for measurements
    student is able to calibrate spectrometer
    student is able to interpret collected spectra, determine chemical composition of measured samples, calculated concentration of elements

  5. X-ray computerized tomography -3h

    student is able to set-up parameters of instrument for CT
    student is able to perform measurements with the use of T
    student is able to process collected data
    students is able to calculate linear absorption coefficients
    student is able to interpret result of measurements

  6. XRF analysis of environmental and biological samples – 3h

    student is able to prepare biological samples for measurements
    student is able to use X-ray spectrometer for measurements
    student is able to calibrate the spectrometer
    student is able to perform measurement
    student is able to calculate concentration of elements
    student is able to made budget of uncertainty

Ćwiczenia projektowe:

Subjects of projects:
Design of instrumentation for elemental analysis of skin, bones, teeth “in vivo”
Development of methods of analysis of physical properties of tissues
Elemental micro-imaging of tissues with the methods based on synchrotron radiation
XRF trace micro-analysis of human fluids and tissues
Development of procedures for XRF analysis of environmental samples

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 150 godz
Punkty ECTS za moduł 4 ECTS
Egzamin lub kolokwium zaliczeniowe 4 godz
Samodzielne studiowanie tematyki zajęć 20 godz
Udział w wykładach 30 godz
Udział w ćwiczeniach projektowych 15 godz
Udział w ćwiczeniach laboratoryjnych 15 godz
Przygotowanie do zajęć 30 godz
Dodatkowe godziny kontaktowe z nauczycielem 10 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 16 godz
Wykonanie projektu 10 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

final grade (F) will be calculated in accordance to the following formula:

K = 0.6 x E + 0.2 x L + 0.2 x P
E-grade from exam
L-grade from laboratory
P-grade from project

Wymagania wstępne i dodatkowe:

Basic knowledge in physics, chemistry and biology

Zalecana literatura i pomoce naukowe:

. A.C.Kak, M.Slaney,“Principles of Computerized Tomographic Imaging”. IEEE Press, 1987. 2000
2. S. Webb, “The Physics of medical imaging”, Institute of Physics Publishing, Bristol and Philadelphia, 1990
3. A. Michette, S. Pfauntsch, X-Rays The First Hundred Years, John Wiley & Sons, 1997.
4. N. A. Dyson, Promieniowanie rentgenowskie w fizyce atomowej i jądrowej, PWN, 1978.
5. R. V. Grieken, A. Markowicz, Handbook of X-Ray Spectrometry, Marcel Dekker, 1993.
6. K. A. Janssens, F.C. Adams, A. Rindby, Microscopic X-ray Fluorescence Analysis, John Wiley & Sons, 2000.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Nie podano dodatkowych publikacji

Informacje dodatkowe:

Brak