Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Industrial robots
Tok studiów:
2013/2014
Kod:
RMS-1-504-s
Wydział:
Inżynierii Mechanicznej i Robotyki
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Mechatronics with English as instruction languagege
Semestr:
5
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
dr hab. inż. Lisowski Wojciech (lisowski@agh.edu.pl)
Osoby prowadzące:
dr hab. inż. Lisowski Wojciech (lisowski@agh.edu.pl)
dr hab. inż. Buratowski Tomasz (tburatow@agh.edu.pl)
dr hab. inż, prof. AGH Cieślik Jacek (cieslik@agh.edu.pl)
dr inż. Bednarz Jarosław (bednarz@agh.edu.pl)
dr inż. Klepka Andrzej (klepka@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Knows structures, principles of designing and manufacturing of links and joints, structure of driving systems, sensor and control systems, applied grippers and tools of manipulating robots MS1A_W05, MS1A_W11, MS1A_W06, MS1A_W13 Egzamin,
Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_W002 Knows techniques and tools of on-line and off-line robot programming as well as structure of program of operation MS1A_W05, MS1A_W10 Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
M_W003 Knows principles of manipulator kinematics modelling MS1A_W08, MS1A_W05 Egzamin,
Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_W004 Knows definitions of basic parameters and their actual values achieved by industrial robot manipulators MS1A_W05 Egzamin,
Wykonanie ćwiczeń laboratoryjnych
M_W005 Knows the manipulator end-effector position and orientation measuring systems MS1A_W05, MS1A_W07 Egzamin,
Wykonanie ćwiczeń laboratoryjnych
M_W006 Knows industrial and service applications of manipulating robots MS1A_W05 Egzamin,
Prezentacja
Umiejętności
M_U001 Can acquire information from professional sources and use it in realization of engineering tasks MS1A_U01, MS1A_U05 Prezentacja,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_U002 Can prepare and carry out presentation of results of realization of engineering tasks MS1A_U04 Prezentacja,
Sprawozdanie
M_U003 Can write down and interpret description of position and orientation MS1A_U20, MS1A_U08 Egzamin,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
M_U004 Can formulate and solve direct and inverse kinematic problem of manipulators of open manipulator kinematic chain MS1A_U20, MS1A_U08 Egzamin,
Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_U005 Is able to program simple manipulating operations of industrial robots MS1A_U02, MS1A_U14 Aktywność na zajęciach,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
M_U006 Can select and design a robot gripper (mechanism, driving system, sensory system and power supply) MS1A_U15, MS1A_U13, MS1A_U11, MS1A_U20, MS1A_U12, MS1A_U03, MS1A_U02, MS1A_U08 Egzamin,
Wykonanie projektu
M_U007 Can determine positioning repeatability of a robotic manipulator experimentally MS1A_U02, MS1A_U19, MS1A_U09 Egzamin,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
Kompetencje społeczne
M_K001 Can learn systematically, keeps deadlines, accepts the matter-of-fact critique of his/her achievements MS1A_K04, MS1A_K05, MS1A_K02 Egzamin,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_K002 Knows, understands and applies in practice professional code of an engineer MS1A_K03 Sprawozdanie,
Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
M_K003 Can work in a team respecting partition of duties and responsibilities MS1A_K04 Wykonanie projektu,
Wykonanie ćwiczeń laboratoryjnych
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Knows structures, principles of designing and manufacturing of links and joints, structure of driving systems, sensor and control systems, applied grippers and tools of manipulating robots + - - - - - - - - - -
M_W002 Knows techniques and tools of on-line and off-line robot programming as well as structure of program of operation + - - - - - - - - - -
M_W003 Knows principles of manipulator kinematics modelling + - - - - - - - - - -
M_W004 Knows definitions of basic parameters and their actual values achieved by industrial robot manipulators + - - - - - - - - - -
M_W005 Knows the manipulator end-effector position and orientation measuring systems + - - - - - - - - - -
M_W006 Knows industrial and service applications of manipulating robots + - - - - - - - - - -
Umiejętności
M_U001 Can acquire information from professional sources and use it in realization of engineering tasks - - + + - - - - - - -
M_U002 Can prepare and carry out presentation of results of realization of engineering tasks - - + + - - - - - - -
M_U003 Can write down and interpret description of position and orientation - - - + - - - - - - -
M_U004 Can formulate and solve direct and inverse kinematic problem of manipulators of open manipulator kinematic chain - - - + - - - - - - -
M_U005 Is able to program simple manipulating operations of industrial robots - - + - - - - - - - -
M_U006 Can select and design a robot gripper (mechanism, driving system, sensory system and power supply) - - - + - - - - - - -
M_U007 Can determine positioning repeatability of a robotic manipulator experimentally - - + - - - - - - - -
Kompetencje społeczne
M_K001 Can learn systematically, keeps deadlines, accepts the matter-of-fact critique of his/her achievements - - + + - - - - - - -
M_K002 Knows, understands and applies in practice professional code of an engineer - - + + - - - - - - -
M_K003 Can work in a team respecting partition of duties and responsibilities - - + + - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. Manipulator’s components and systems (8)

    Classification of contemporary robots. Kinematic structures of manipulators: arm and wrist mechanisms. Links and joints. Driving systems of mechatronic positioning devices. Motion transmission systems. Control systems of manipulating robots.

  2. End-effectors of industrial robots (7)

    Overview of industrial robots’ end-effectors. Automatic assembly. Structures of grippers. Mechanisms of grippers. Vacuum and electromagnetic grippers. Dexterous robot hand. Driving systems of grippers. Sensoric systems of end-effectors. Tool exchange systems – grasps and storages. End-effectors used in technological operations.

  3. Parameters and characteristics of manipulating robots (7)

    Classification and definitions of manipulator parameters and characteristics. Techniques of measurement of the end-effector pose. Robot calibration techniques.

  4. Service robots (7)

    Mobile platforms: elements and systems, modelling, navigation and control.

  5. Industrial applications of robots (4)

    Robitized manufacturing system: auxiliary devices, sensory systems, integration. Dedicated software tools. Methods of safety assurance in robotics.

  6. Mechanics of manipulators (8)

    Description of position and orientation. Manipulator kinematics: direct and inverse problem. Planning of motion path and trajectory. Determination of motion velocity and acceleration. Basics of manipulators’ dynamics.

  7. Basics of industrial robot programming (8)

    Techniques of use of operator-programmer panels. Use of the script type of programming – programming languages. Simulation of robot operation – programming environments.

  8. Off-line industrial robot programming (7)

    Techniques of the off-line programming. Software tools of off-line programming. Methods of implementation of the off-line programs.

  9. Application of service robots (4)

    Examples of applications: professional robots, household robots, personal robots

Ćwiczenia laboratoryjne:
  1. Testing of robots (15)

    Standards in industrial robotics. Rules of planning and execution of experimental testing, analysis and reporting of results of investigation of manipulating robots. Analysis of manipulator workspace. Testing of positioning repeatability. Testing of manipulator kinematic parameters. Techniques of robot calibration.

  2. Manipulator components and systems (15)

    Driving systems of manipulators. Sensory systems of manipulators. Integration techniques of robot’s components and subassemblies. Manipulator motion control systems.

  3. Programming of robot operation (15)

    Robot programming in laboratory. Robot programming with use of computer simulation tools.

Ćwiczenia projektowe:
  1. Manipulator design (15)

    Selection of a kinematic structure. Kinematic analysis: direct and inverse kinematics. Planning of a robot end-effector motion path and trajectory. Selection of driving systems. Design of links and joints.

  2. Designing of robot end-effectors (15)

    Characteristics of industrial robots’ grippers – mechanical, vacuum and electromagnetic grippers. Overview of design of grippers – mechanisms, driving systems, and sensors. Operations in automatic assembling. Dexterous robot hands. Tool exchange systems – grasps and storages. End-effectors used in technological operations.

  3. Design of robotized systems (15)

    Examples of computer aided design of robotized manufacturing systems.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 360 godz
Punkty ECTS za moduł 12 ECTS
Przygotowanie do zajęć 60 godz
Udział w ćwiczeniach laboratoryjnych 45 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 60 godz
Udział w ćwiczeniach projektowych 45 godz
Wykonanie projektu 45 godz
Samodzielne studiowanie tematyki zajęć 43 godz
Udział w wykładach 60 godz
Egzamin lub kolokwium zaliczeniowe 2 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

The course final grade is determined basing on:
- average of the laboratory partial grades (35%)
- the project class grade (35%)
- the exam grade (30%)

Wymagania wstępne i dodatkowe:

Nie podano wymagań wstępnych lub dodatkowych.

Zalecana literatura i pomoce naukowe:

G. Cook, Mobile Robots: Navigation, Control and Remote Sensing, 2011
K. S. Fu, R. Gonzalez, C.S.G. Lee, “Robotics control, sensing, vision, and intelligence”, Mc Graw Hill 2008
D.T. Pham et all: Robot grippers, Springer Verlag. IFS Ltd., UK, 1986
E. Rivin, Mechanical design of robots, McGraw-Hill, 1988
B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, “Robotics: Modelling, Planning and Control (Advanced Textbooks in Control and Signal Processing)”, Springer 2010
M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot Modeling and Control”, John Wiley and Sons, Inc., 2005

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Nie podano dodatkowych publikacji

Informacje dodatkowe:

Brak