Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Physics of energy transformation and use
Tok studiów:
2013/2014
Kod:
STC-2-101-SF-s
Wydział:
Energetyki i Paliw
Poziom studiów:
Studia II stopnia
Specjalność:
Sustainable Fuels Economy
Kierunek:
Technologia Chemiczna
Semestr:
1
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
prof. nadzw. dr hab. inż. Filipowicz Mariusz (filipow@agh.edu.pl)
Osoby prowadzące:
mgr inż. Szubel Mateusz (mszubel@agh.edu.pl)
prof. nadzw. dr hab. inż. Filipowicz Mariusz (filipow@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student has an expanded knowledge about physics, necessary for solving difficult tasks related with engineer and chemical technology and with using chemistry products. TC2A_W03 Egzamin
M_W002 Student is familiar with advanced methods of renewable energy using, including energy storage and cooperation of energy and fuel systems. TC2A_W09 Egzamin
M_W003 Student has advanced knowledge about methods and technology of resources/fuels transformation and use. TC2A_W11 Egzamin
Umiejętności
M_U001 Student has the ability to use contemporary physical and chemical methods of analysis and researches with an energetic processes. TC2A_U11 Aktywność na zajęciach,
Kolokwium
M_U002 Student is able to work individually and in team, realising different functions. TC2A_U03 Kolokwium,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
M_U003 Student is able to formulate and test hypotheses related not only to engineering problems, but also to simple research tasks. TC2A_U13 Aktywność na zajęciach,
Kolokwium
M_U004 Student has ability to planning and leading experiments in laboratory, interpreting results and formulate conclusions. TC2A_U09 Aktywność na zajęciach,
Kolokwium,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
M_U005 Student can take care about safety on stand of work and is able to evaluate threats during experiments and researches. TC2A_U23 Aktywność na zajęciach,
Kolokwium,
Sprawozdanie,
Wykonanie ćwiczeń laboratoryjnych
Kompetencje społeczne
M_K001 Student is aware of importance of non-technical aspects of engineer activities, including impact for environment and responsibility for decisions. Student is proecological. TC2A_K02 Udział w dyskusji
M_K002 Student is aware of responsibility for tasks realized in team. TC2A_K04 Zaangażowanie w pracę zespołu
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Inne
Zaj. terenowe
Zaj. warsztatowe
E-learning
Wiedza
M_W001 Student has an expanded knowledge about physics, necessary for solving difficult tasks related with engineer and chemical technology and with using chemistry products. + - - - - - - - - - -
M_W002 Student is familiar with advanced methods of renewable energy using, including energy storage and cooperation of energy and fuel systems. + - - - - - - - - - -
M_W003 Student has advanced knowledge about methods and technology of resources/fuels transformation and use. + - - - - - - - - - -
Umiejętności
M_U001 Student has the ability to use contemporary physical and chemical methods of analysis and researches with an energetic processes. - + - - - - - - - - -
M_U002 Student is able to work individually and in team, realising different functions. - + - - - - - - - - -
M_U003 Student is able to formulate and test hypotheses related not only to engineering problems, but also to simple research tasks. - - + - - - - - - - -
M_U004 Student has ability to planning and leading experiments in laboratory, interpreting results and formulate conclusions. - - + - - - - - - - -
M_U005 Student can take care about safety on stand of work and is able to evaluate threats during experiments and researches. - - + - - - - - - - -
Kompetencje społeczne
M_K001 Student is aware of importance of non-technical aspects of engineer activities, including impact for environment and responsibility for decisions. Student is proecological. - + + - - - - - - - -
M_K002 Student is aware of responsibility for tasks realized in team. - - + - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:

Introduction to solar energy: solar constant, time equation, transfer of solar radiation through the atmosphere.

Introduction to mathematical theory of solar collector, basic parameters of solar collector, construction and types, components.

Introduction to photovoltaic, band structure of solid state, photovoltaic effect, characteristics of the solar cells, full spectrum photovoltaic systems, hybrid systems: photovoltaics+thermics, thermophotovoltaics.

Wind energy: origin of the winds, wind power, Betz’ law, basic parameters of the wind, different scale wind systems, small wind turbines, urban wind turbines, future technologies of wind energy conversion.

Water energy, different scale water energy systems, turbine types, ocean energy (OTEC, tidal, wave, salinity difference, etc.).

Origin of geothermal energy, geothermal energy systems, ground heat exchangers, heat pumps.

Direct heat to electricity conversion, thermoelectric, thermionic and magnetohydrodynamic generators.

Fission nuclear energy, introduction, technologies of nuclear reactors, simulation of nuclear power plant work.
Fusion nuclear energy.

Storage of thermal and electrical energy.
Energy transportation.

Energy usage in lighting systems.

Energy usage in motors and home equipment.

Energy in transportation.

Distributed energy systems, virtual Power plants.

Introduction to physics of climate and greenhouse effect.

Ćwiczenia audytoryjne:

Tutorials are devoted to students solving problems illustrating information presented in the lectures. Tasks will be connected e.g. with determining the Sun’s position and radiation, mathematical descriptions of solar collectors (efficiency calculation), modelling the efficiency of photovoltaic for different kinds of radiation spectrums, Betz’ law, water flow and energy potential, efficiency of water energy conversion, efficiency of cycles using geothermal medium, determining of thermoelectric, thermionic, magnetohydrodynamics systems efficiency,nuclear reactions(fission, fusion) efficiency calculations, energy production in nuclear reactors, analysis of energy storage (electricity and heat) – storage capacity calculations, efficiency of light source, analysis of the efficiency of electric motors, transport efficiency, distributed systems models, simple models of the Earth’s energy balance, etc.

Ćwiczenia laboratoryjne:

Students will study the working principles of such devices as:
- solar collectors,
- photovoltaic devices,
- heat exchangers,
- models of heat engines (Stirling, steam),
- thermoelectric generators,
- wind turbines,
- Pelton turbines,
- nuclear power plant simulators,
- superconductors,
- ultracapacitors.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 175 godz
Punkty ECTS za moduł 7 ECTS
Udział w wykładach 30 godz
Samodzielne studiowanie tematyki zajęć 40 godz
Przygotowanie do zajęć 45 godz
Egzamin lub kolokwium zaliczeniowe 5 godz
Udział w ćwiczeniach laboratoryjnych 30 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 25 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

Exam grade (E) is issued based on the result of the examination. Evaluation of classes © and laboratory (L) are calculated as follows:

percentage of points obtained is converted to an assessment in accordance with the AGH Regulations of Studies.

Final grade (FG) is calculated as a weighted average of the above ratings:

FG = 0.60 · w · E + w · C + 0.20 · w · L

w = 1 for the first term,
w = 0.9 for the second term,
w = 0.8 for the third term

Wymagania wstępne i dodatkowe:

Nie podano wymagań wstępnych lub dodatkowych.

Zalecana literatura i pomoce naukowe:

1. B. Sorensen, “Renewable energy : its physics, engineering, use, environmental impacts, economy and planning aspect”, 2nd ed. San Diego : Academic Press, 2000

2. W. Smolec, „Fototermiczna konwersja energii słonecznej”, Warszawa : Wydaw. Naukowe PWN, 2000

3. T. Rodacki, A. Kandyba, „Przetwarzanie energii w elektrowniach słonecznych”, Wydawnictwo Politechniki Śląskiej, Gliwice 2000.

4. articles in specialist foreign journals: Renewable Energy, Solar Energy, Energy Conversion and Management and in domestic: Energetyka and other

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Nie podano dodatkowych publikacji

Informacje dodatkowe:

Brak