Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Computational Modelling of Processing of Materials
Tok studiów:
2016/2017
Kod:
MIS-1-619-s
Wydział:
Inżynierii Metali i Informatyki Przemysłowej
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Informatyka Stosowana
Semestr:
6
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
Pietrzyk Maciej (Maciej.Pietrzyk@agh.edu.pl)
Osoby prowadzące:
Pietrzyk Maciej (Maciej.Pietrzyk@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student should know and understand the physical phenomena associated with the transport of mass and energy as well as distribution of stress and strain. IS1A_W01, IS1A_W02 Aktywność na zajęciach,
Sprawozdanie,
Wykonanie projektu
M_W002 Student should know the stages of creating numerical models and appropriate methods, techniques and tools for their implementation. IS1A_W03 Aktywność na zajęciach,
Sprawozdanie,
Wykonanie projektu,
Projekt inżynierski
M_W003 Student has a broader and deeper knowledge concerning selected physical processes IS1A_W15 Aktywność na zajęciach,
Egzamin
M_W004 Student has a knowledge of the development trends and new solutions in the field of numerical modeling of manufacturing processes. IS1A_W07 Aktywność na zajęciach,
Egzamin,
Udział w dyskusji
Umiejętności
M_U001 Student can make a critical analysis, to correctly interpret the results of simulation and present them properly. IS1A_U01, IS1A_U06 Aktywność na zajęciach,
Sprawozdanie,
Wykonanie projektu
M_U002 Student can choose the best numerical solution of selected process and on this basis prepare, create, and verify the model IS1A_U16, IS1A_U12, IS1A_U07 Aktywność na zajęciach,
Wykonanie projektu
M_U003 Student is able to evaluate the possibility of using numerical models to better understand and improve the physical processes IS1A_U15 Sprawozdanie,
Wykonanie projektu
Kompetencje społeczne
M_K001 Student will be able to plan teamwork, distribute tasks and estimate time of delivery IS1A_K03 Wykonanie projektu
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W001 Student should know and understand the physical phenomena associated with the transport of mass and energy as well as distribution of stress and strain. + - + - - - - - - - -
M_W002 Student should know the stages of creating numerical models and appropriate methods, techniques and tools for their implementation. + - + - - - - - - - -
M_W003 Student has a broader and deeper knowledge concerning selected physical processes + - + - - - - - - - -
M_W004 Student has a knowledge of the development trends and new solutions in the field of numerical modeling of manufacturing processes. + - - - - - - - - - -
Umiejętności
M_U001 Student can make a critical analysis, to correctly interpret the results of simulation and present them properly. + - + - - - - - - - -
M_U002 Student can choose the best numerical solution of selected process and on this basis prepare, create, and verify the model + - - - - - - - - - -
M_U003 Student is able to evaluate the possibility of using numerical models to better understand and improve the physical processes - - + - - - - - - - -
Kompetencje społeczne
M_K001 Student will be able to plan teamwork, distribute tasks and estimate time of delivery - - + - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:

1. The tasks of modeling physical processes
• Engineering materials and prediction of their properties
• Classification of manufacturing processes with respect to possibilities of their modeling
• Historical review of modeling techniques in materials science
• The role of modeling in the design of new materials and manufacturing processes.

2. From physical phenomena to numerical model – part I.
• Classification of numerical models
• Physical model – mathematical model – computational model.
• Steps of the solution of the problem: 1) Modelling of reality (definition of the problem, introduction of assumptions and constraints, selection of available information); 2) Algorithm design (natural language, pseudo code, flow chart); 3. Selection of the programming tools and implementation (data structure, solution algorithm); 4. Application of the developed solution and verification of the results.
• The simplifications used in the modeling (model order reduction, sensitivity analysis, etc.)
• The problem of the continuum and an introduction to homogenization.
• Calibration and scaling of models, performing calculation.
• Selection of the calculation algorithm to solve tasks of modeling of various phenomena (numerical stability, the stability criteria, robustness of models, solution of ill-posed problems)
• Identification of models and inverse analysis
3. Numerical formulation of the problem of heat and mass transport
• Partial differential equation of mass and heat transfer (Fick equation, Fourier equation)
• Integral form of differential equations, variational formulation for the equation of heat and mass transport
• Initial and boundary conditions
4. Numerical formulation of the problem of deformation and flow
• State of stress, definition and kinds of stresses with regards to the continuum approach, idea of multiscale modelling.
• Measures of strains, Lagrange and Euler formulation, strain tensor.
• Equations of equilibrium and Navier-Stokes equations.
• Variational form of equations of equilibrium and Navier-Stokes equations. Method of weighted residuum.
• Mathematical formulation of mechanical problems, Green and Ostrogradski theorems, material derivative, mass conservation.
• Integral form of differential equations, variational formulation for equilibrium equations, weighted residuum method.
• Boundary conditions.
5. Constitutive laws

• Field theory as a basis for numerical modeling of physical problems. Definition of the constitutive law.
• Prandtl-Reuss elastoplastic constitutive law, Levy-Mises flow law, Norton-Hoff visco-plastic flow law
• Constitutive laws for flow of fluids, turbulence.

6. Applications and limitations of numerical methods – part I.

• Time integration schemes
• Finite Difference Method, Finite Element Method and alternative methods
• Classification of models in terms of cost calculations and computing capabilities
• How to choose the best numerical model to solve the physical problem?
• Overview of commercial software for solving engineering problems (Abaqus, Adina, Forge, Matlab, etc.)

7. Rheological models of materials – part I metals

• The constitutive laws and the rheological model
• Accounting for microstructure evolution in rheological models
• External variable and internal variable models
• Rheological models for sheet material, anisotropy, forming limit diagrams
• Experimental tests and identification of rheological models for metals
• Sensitivity analysis and inverse analysis for rheological models of metals

8. Rheological models of materials – part II non-metallic materials

• Rheological models of glass, creep, stress relaxation
• Rheological models of polymers and materials in geology
• Experimental tests and identification of rheological models for non-metallic materials
• Sensitivity analysis and inverse analysis for rheological models of non-metallic materials

9. Rheological models of materials – part III – liquids
• Viscosity as a basic property of a liquid, the Newtonian fluid and non-Newtonian fluid
• Laminar and turbulent flow, turbulence modeling
• Rheological models of blood.
• The flow of multiphase fluids, thixotropy
• Experimental tests and identification of rheological models for fluids
• Sensitivity analysis and inverse analysis for rheological models of fluids
10. Phase transformations in metals and alloys– physical basis
• Conditions of thermodynamic equilibrium
• Recrystallization of the steel after cold-working
• Nucleation and growth of precipitates in steels
• Diffusional phase transformations
• Martensitic transformation
• Correlation between process parameters and microstructure and properties of steel

11. Phase transformations in metals and alloys – numerical models
Classical and alternative numerical methods:
• JMAK equation, Scheil’s additivity rule
• Phase field method
• Level set method
• Monte Carlo Methods
• Molecular Dynamics
• Cellular automata
• Introduction to multiscale modeling: RVE and SSRVE methods

12. Methods for generating microstructure of polycrystals
• Voronoi algorithms
• Image analysis based methods
• Digital Representation of polycrystals

13. Design of manufacturing chains
• Modeling of manufacturing chains, selection of a case study: manufacturing of AHSS (multiphase steel) products
• Definition of the optimization problem, application of the inverse analysis, problem of reconstruction
• modeling of manufacturing of AHSS products

14. Prediction of properties of materials
• Strength and workability – two contradictory properties of materials. Methods to increase strength and workability, work hardening, grain refinement, precipitation (microalloyed steels, non-ferrous alloys), multi phase materials
• Fracture criteria, fatigue criteria, abrasion and wear resistant, etc.
• Implementation of functional properties of materials in numerical models. Prediction of product properties.

Ćwiczenia laboratoryjne:

Students create a numerical model of the selected physical process in Matlab.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 155 godz
Punkty ECTS za moduł 6 ECTS
Egzamin lub kolokwium zaliczeniowe 2 godz
Dodatkowe godziny kontaktowe z nauczycielem 10 godz
Samodzielne studiowanie tematyki zajęć 27 godz
Wykonanie projektu 20 godz
Przygotowanie do zajęć 40 godz
Udział w wykładach 28 godz
Udział w ćwiczeniach laboratoryjnych 28 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

Weighted average: 0.4 * grade from classes + 0.6 * grade from exam

Wymagania wstępne i dodatkowe:

Zgodnie z Regulaminem Studiów AGH podstawowym terminem uzyskania zaliczenia jest ostatni dzień zajęć w danym semestrze. Termin zaliczenia poprawkowego (tryb i warunki ustala prowadzący moduł na zajęciach początkowych) nie może być późniejszy niż ostatni termin egzaminu w sesji poprawkowej (dla przedmiotów kończących się egzaminem) lub ostatni dzień trwania semestru (dla przedmiotów niekończących się egzaminem).

Zalecana literatura i pomoce naukowe:

1. O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method Set, Butterworth-heinemann, 2005.
2. D. A. Porter, K. E. Easterling, Phase Transformations in Metals and Alloys,1992
3. S.J. Chapman, MATLAB. Programming for Engineers. 2008

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. Pietrzyk M., Kusiak J., Kuziak R., Madej Ł., Szeliga D., Gołąb R., Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metallurgical and Materials Transactions B, 46B, 2014, 497-506.
2. Madej Ł., Szyndler J., Trębacz L., Pietrzyk M., Numerical modelling of manufacturing of lightweight components – selected issues, Procedia CIRP 18, 2014, 232 – 237.
3. Pernach M., Bzowski K., Pietrzyk M., Numerical modelling of phase transformation in DP steel after hot rolling and laminar cooling, Journal for Multiscale Computational Engineering, 12, 2014, 397–410.
4. Kusiak J., Sztangret Ł., Pietrzyk M., Effective strategies of metamodelling of industrial metallurgical processes, Advances in Engineering Software, 89, 2015, 90-97.
5. Milenin I., Pernach M., Pietrzyk M., Application of the control theory for modelling austenite-ferrite phase transformation in steels, Computer Methods in Materials Science, 15, 2015, 327-335.

Pozostałe publikacje znajdują się na stronie: http://www.bpp.agh.edu.pl/

Informacje dodatkowe:

Brak