Module also offered within study programmes:
General information:
Name:
Materials for energy systems and aeronautics
Course of study:
2017/2018
Code:
MIM-2-210-PS-n
Faculty of:
Metals Engineering and Industrial Computer Science
Study level:
Second-cycle studies
Specialty:
Processing of Alloys and Special Materials
Field of study:
Materials Science
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Part-time studies
Course homepage:
 
Responsible teacher:
dr inż. Cempura Grzegorz (cempura@agh.edu.pl)
Academic teachers:
prof. zw. dr hab. inż. Czyrska-Filemonowicz Aleksandra (czyrska@agh.edu.pl)
dr inż. Cempura Grzegorz (cempura@agh.edu.pl)
dr inż. Ziętara Maciej (zietara@agh.edu.pl)
dr inż. Rutkowski Bogdan (rutkowsk@agh.edu.pl)
dr inż. Majewska-Zawadzka Kinga (kinga@agh.edu.pl)
Module summary

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics IM2A_U01, IM2A_U10, IM2A_U14 Activity during classes,
Examination,
Test,
Presentation
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects IM2A_W01, IM2A_W03, IM2A_W08 Activity during classes,
Examination
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines IM2A_W01, IM2A_W03, IM2A_W08 Activity during classes,
Examination,
Scientific paper,
Participation in a discussion
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development IM2A_W01, IM2A_W12 Activity during classes,
Examination,
Presentation,
Participation in a discussion
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Others
E-learning
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics + - - - - + - - - - -
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics,particularly related to thermal efficiency, economical and ecological aspects + - - - - + - - - - -
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines + - - - - + - - - - -
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development + - - - - + - - - - -
Module content
Lectures:

1. Energy and aeronautic industry – current status and development.
2. Criteria for the selection of materials for steam power plants.
3. Steels for steam power plants: development, characteristics and potential for future development of martensitic (9-12 % Cr) and austenitic steels.
4. Production of clean energy: near zero-emission steam power plants – membranes for CO2 and O2 separation, renewables.
5. Titanium, aluminium and gamma TiAl intermetallics applications in energy and aeronautics industry.
6. Ni, Fe, Co – base wrought superalloys applications in energy systems, aeronautics and aerospace.
7. Cast Ni-base superalloys for turbine blades, protective coatings (diffusion coatings, MCrYAl and TBC).
8. Materials for fission and fusion reactors.
9. Materials for conversion and energy storage (fuel cells, Li-ion batteries).
10. Composites for aeronautics and aerospace.

Seminar classes:

1. Industrial steam and gas turbines, aircraft engines – construction and operation. Selection of materials for aircraft engine components.
2. Steels (martensitic, austenitic) for steam power plants.
3. Aluminium and titanium alloys for energy and aeronautics. Structural intermetallics for energy and aerospace applications.
4. Wrought superalloys – microstructure and properties. Cast nickel-base superalloys for gas turbine blades. Heat resistant coatings on superalloys.
5. Materials for nuclear (fission and fusion) reactors (tungsten alloys).
6. Renewables; energy conversion and storage.

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 85 h
Module ECTS credits 3 ECTS
Preparation for classes 10 h
Contact hours 10 h
Participation in lectures 21 h
Participation in seminar classes 12 h
Realization of independently performed tasks 30 h
Examination or Final test 2 h
Additional information
Method of calculating the final grade:

0,5 * ocena z zajęć seminaryjnych + 0,5 * ocena z egzaminu

Prerequisites and additional requirements:

Zgodnie z Regulaminem Studiów AGH podstawowym terminem uzyskania zaliczenia jest ostatni dzień zajęć w danym semestrze. Termin zaliczenia poprawkowego (tryb i warunki ustala prowadzący moduł na zajęciach początkowych) nie może być późniejszy niż ostatni termin egzaminu w sesji poprawkowej (dla przedmiotów kończących się egzaminem) lub ostatni dzień trwania semestru (dla przedmiotów niekończących się egzaminem).

Recommended literature and teaching resources:

R.W. Cahn, P. Haasen, E.J. Kramer: Materials Science and Technology, VCH, New York, vol.8, 1992.
M. Blicharski, Wstęp do inżynierii Materiałowej, W-wa, WNT 2003
M. Blicharski Inżynieria materiałowa – Stale, W-wa, WNT 2004
A. Czyrska-Filemonowicz, P.J. Ennis, A. Zielińska-Lipiec – „High Chromium Creep Resistant Steels for Modern Steam Power Plant”, chapter in „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii PAN, K. Swiątkowski (ed.), Wydawnictwa Naukowe AKAPIT, Kraków, 2002, p.193-217
J.R. Davies (ed): „Metallurgy, Processing and Properties of Superalloys”, Heat Resistant Materials, ASM Specialty Handbook, 1997.
R.C. Reed: The Superalloys. Fundamental and applications. Cambridge University Press, 2006
J. Wosik: “Evaluation of the long-term microstructural stability of selected Ni-base superalloys”, rozprawa doktorska, AGH Kraków, 2002
A. Zielińska-Lipiec: „Analiza stabilności mikrostruktury modyfikowanych stali martenzytycznych 9% Cr w procesie wyżarzania i pełzania”, praca habilitacyjna, AGH Kraków, 2005
B. Dubiel: „Zmiany mikrostruktury podczas pełzania monokrystalicznych nadstopów niklu”, praca habilitacyjna, AGH Kraków, 2011
G. Cempura: „Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperature”, rozprawa doktorska, AGH Kraków, 2012
B. Rutkowski: “Mechanical Properties and Microstructure of Dense Ceramic Oxygen Separation Membranes",rozprawa doktorska, AGH Kraków-RWTH Aachen, 2012
A. Zielińska-Lipiec – Stale stosowane w energetyce konwencjonalnej i jądrowej, AGH Kraków, 2015

Scientific publications of module course instructors related to the topic of the module:

Rozprawy doktorskie i monografie:
1. K. Bryła – Zmiany mikrostruktury podczas pełzania nowej stali martenzytycznej na wirniki
turbin parowych, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH
Kraków, 2004
2. B. Rutkowski – Mechanical properties and microstructure of dense ceramic membranes for
oxygen separation in zero-emission power plants, (promotorzy: prof. T. Beck i prof. A.
Czyrska-Filemonowicz i prof. T. Beck), AGH i RWTH Aachen, 2012
3. A. Czyrska-Filemonowicz, P.J. Ennis, A. Zielińska-Lipiec – High Chromium Creep
Resistant Steels for Modern Steam Power Plant, rozdział w książce „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii Polskiej Akademii Nauk, K. Swiątkowski (red.), AKAPIT, Kraków, 2002, s. 193-217
4. A. Czyrska-Filemonowicz, B. Dubiel, A. Wasilkowska – monografia p.t. „Żaroodporne i
żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków”, Wyd. Fotobit, 2004,
s.1-124
5. B. Rębiasz, A. Orchel-Szeląg, A. Czyrska-Filemonowicz – monografia p.t. “NewMat project- the answer to challenges related to the energy market development”, Wydawnictwo Naukowe Akapit, Kraków 2014, s. 1-107
6. G. Cempura, Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperature, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2012.

7. M. Ziętara – Microstructure stability of second and fourth generation single crystal nickel-base superalloys during high temperature creep deformation, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2011

8. J. Wosik – Evaluation of the long-term microstructural stability of selected Ni-base superalloys, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2002.
Artykuły:
1. 4. J. Wosik, H. J. Penkalla, A. Czyrska-Filemonowicz – Waspaloy – stop na wirniki
nowoczesnych turbin parowych, Inżynieria Materiałowa, 4 (2002)163-167
2. G. Cempura, A. Kruk, C. Thomser, M. Wirtz, A. Czyrska-Filemonowicz – Microstructure
characterization of tungsten based alloys for fusion application, Archives of Metallurgy
and Materials, 58(2013)473-476
3. B. Rutkowski, J. Malzender, T. Beck, A Czyrska-Filemonowicz- Membrany dla
nowoczesnych elektrowni węglowych wytwarzających czystą energię, Hutnik-
Wiadomosci Hutnicze, 80(2013)274-279
1. A. Czyrska-Filemonowicz, B. Dubiel, M. Ziętara, A. Cetel – Development of single crystal Ni-based superalloys for advanced aircraft turbine blades”, Inżynieria Materiałowa, 3-4(2007)128-133.
2. G. Cempura, H. J. Penkalla, F. Schubert, A. Czyrska-Filemonowicz – Low Cycle Fatigue behavior and microstructure of 3rd generation TiAl based alloy, Inżynieria Materiałowa,175/3(2010)658-661.
3. M. Ziętara, A. Kruk, A. Gruszczyński, A. Czyrska-Filemonowicz – FIB-SEM tomography of 4th generation PWA 1497 superalloy, Materials Characterisation, 87(2014)143-148; JCR.
4. M. Zietara, A. Cetel, A. Czyrska-Filemonowicz: „Microstructure Stability of 4th Generation Single Crystal Superalloy, PWA 1497, during High Temperature Creep Deformation”, Materials Transactions, Vol. 52, No.03, 2011, s.336-339.

Additional information:

None