Module also offered within study programmes:
General information:
Name:
Design and physics of engineering materials
Course of study:
2017/2018
Code:
CIM-2-202-FM-s
Faculty of:
Materials Science and Ceramics
Study level:
Second-cycle studies
Specialty:
Functional Materials
Field of study:
Materials Science
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Course homepage:
 
Responsible teacher:
dr hab. inż. Tkacz-Śmiech Katarzyna (smiech@agh.edu.pl)
Academic teachers:
dr hab. inż. Kluska Stanisława (kluska@agh.edu.pl)
dr inż. Kucza Witold (witek@agh.edu.pl)
dr hab. inż. Tkacz-Śmiech Katarzyna (smiech@agh.edu.pl)
Module summary

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence
M_K001 Awareness of the need of commercialization of new technologies and new materials. IM2A_K05 Presentation
M_K002 Awareness of the economic effects of new technologies and their possible effects on the environment. IM2A_K05 Presentation
M_K003 Understanding that progress in materials science is important for the development other technologies, including: cosmic, biomedical, information technologies and machine industry. IM2A_K06 Case study
Skills
M_U001 Knowledge of database of CES software. Skills to use CES in designing and selection of materials for various applications. IM2A_U07 Project
M_U002 Ability to analyze reference data and indicate directions of research on new materials. IM2A_U09 Presentation
M_U003 Skills to design materials of tailored properties for various applications, based on own knowledge and reference data. IM2A_U09 Project
Knowledge
M_W001 Knowledge of the relationships between the properties of the materials and their structure at different levels IM2A_W09 Work done within the framework of a practical placement
M_W002 Understanding of the methodology of design and selection of materials. IM2A_W09 Project
M_W003 Awareness of the usefulness of the database in material design. IM2A_W13 Project
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Others
E-learning
Social competence
M_K001 Awareness of the need of commercialization of new technologies and new materials. + - - - - - - - - - -
M_K002 Awareness of the economic effects of new technologies and their possible effects on the environment. + - - - - - - - - - -
M_K003 Understanding that progress in materials science is important for the development other technologies, including: cosmic, biomedical, information technologies and machine industry. + - - - - - - - - - -
Skills
M_U001 Knowledge of database of CES software. Skills to use CES in designing and selection of materials for various applications. + - - - - - - - - - -
M_U002 Ability to analyze reference data and indicate directions of research on new materials. + - - - - - - - - - -
M_U003 Skills to design materials of tailored properties for various applications, based on own knowledge and reference data. + - - - - - - - - - -
Knowledge
M_W001 Knowledge of the relationships between the properties of the materials and their structure at different levels + - - - - - - - - - -
M_W002 Understanding of the methodology of design and selection of materials. + - - - - - - - - - -
M_W003 Awareness of the usefulness of the database in material design. + - - - - - - - - - -
Module content
Lectures:
  1. Lecture

    1. Introduction: Methodologies of material design (bottom-up and top-down).
    2. Classification of engineering materials.
    3. Hierarchical model of materials structure (systematization): electronic structure, crystal structure, point defects, linear and surface defects, surface, habit.
    4. Elastic properties and stresses in the material. Stress and strain tensors.
    5. Plasticity, fracture toughness, strength, creep, fatigue strength – designing principles and theoretical basis.
    6. Designing of materials of tailored thermal properties (heat conductors and insulators); reduction of thermal stresses.
    7. Corrosion and wear resistance – methods of surface engineering.
    8. Designing of materials of tailored electric properties (conductors, dielectrics, superconductors).
    9. Magnetic materials (hard and soft magnets).
    10. Designing of optical materials.
    11. Rules of designing hybrid materials.

  2. Project activities

    Computer classes with application of CES Edu Pack, Granta Materials software: solving problems in the area of selection and designing of materials of tailored properties, including: mechanic, electric, optic, thermal and magnetic properties. Drawing and analysis of Ashby’s maps. Analysis of the rules of hybrid materials design. Solving chosen problems in physics of materials and solid state physics (crystal structure, band structure, reciprocal lattice).

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 120 h
Module ECTS credits 4 ECTS
Contact hours 7 h
Preparation for classes 14 h
Preparation of a report, presentation, written work, etc. 14 h
Completion of a project 13 h
Realization of independently performed tasks -1 h
Participation in lectures 45 h
Participation in project classes 28 h
Additional information
Method of calculating the final grade:

A final grade is a grade for design classes, calculated in proportion to the number of points scored:
1) for the implementation of project tasks – maximally 70 point;
2) for the activity during classes – maximally 70 point.

Prerequisites and additional requirements:

Foundations of solid state physics and chemistry.

Recommended literature and teaching resources:

Ashby M., Shercliff H., Cebon D.: Materials, engineering, science, processing and design, Elsevier, UK 2010.
Ashby M. F.: Jones D.R.H., Materiały inżynierskie. t.1 i 2, , WNT, Warszawa 1996.
Tkacz-Śmiech K.: Elektrony w atomach, cząsteczkach i kryształach wprowadzenie w zagadnienia wiązania chemicznego w strukturach nieorganicznych, Wyd. AGH, Kraków 2002.
Nadachowski F., Jonas S., Ptak W.: Wstęp do projektowania technologii ceramicznych, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 1999.
Pampuch R.: Współczesne materiały ceramiczne, Wyd. AGH, Kraków 2005.
Dobrzański L.A.: Materiały inżynierskie i projektowanie materiałowe, WNT, 2006.
Dobrzański L.A.: Metalowe materiały inżynierskie, WNT, Warszawa 2004.
Dobrzański L.A.: Niemetalowe materiały inżynierskie, Wyd. Politechniki Śląskiej, Gliwice 2008.
Burakowski T., Wierzchoń T.: Inżynieria powierzchni metali, WNT, Warszawa 1995.
Lalena J.N.:, Cleary D.A.: Principles of inorganic materials design, Wiley, 2005.
Chiang Y.-M., Birnie III D., Kingery W.D.: Physical ceramics, Wiley, 1997.
Springer handbook of condensed matter and materials data. ed. W. Martienssen and H. Warlimont, 2005.

Scientific publications of module course instructors related to the topic of the module:

Tkacz-Śmiech K.: Elektrony w atomach, cząsteczkach i kryształach wprowadzenie w zagadnienia wiązania chemicznego w strukturach nieorganicznych, Wyd. AGH, Kraków 2002.
Tkacz-Śmiech K.: Gęstość elektronowa w opisie oddziaływań chemicznych w kryształach, Polski Biuletyn Ceramiczny Vol. 74, Kraków 2003.
Tkacz-Śmiech K.: Kryształy jonowo-kowalencyjne typu AB i ABO3: związki pomiędzy składem chemicznym, budową, naturą wiązań i wybranymi właściwościami, Polski Biuletyn Ceramiczny Vol. 95, Kraków 2006.
Tkacz-Śmiech K.: Termodynamika dla ceramików, Kraków 2012.

Additional information:

None