Module also offered within study programmes:
General information:
Name:
Materials for energy systems and aeronautics
Course of study:
2017/2018
Code:
MIM-2-211-IS-s
Faculty of:
Metals Engineering and Industrial Computer Science
Study level:
Second-cycle studies
Specialty:
Joining Engineering
Field of study:
Materials Science
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
dr inż. Ziętara Maciej (zietara@agh.edu.pl)
Academic teachers:
dr inż. Cempura Grzegorz (cempura@agh.edu.pl)
dr inż. Ziętara Maciej (zietara@agh.edu.pl)
dr inż. Rutkowski Bogdan (rutkowsk@agh.edu.pl)
dr inż. Majewska-Zawadzka Kinga (kinga@agh.edu.pl)
Module summary

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence
M_K001 Student knows issues connected with energy industry, energy market and its influence on economy and society. IM2A_K02, IM2A_K03, IM2A_K01 Activity during classes
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics IM2A_U02, IM2A_U01, IM2A_U10, IM2A_U14 Activity during classes,
Examination,
Test,
Presentation,
Participation in a discussion
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics, particularly related to thermal efficiency, economical and ecological aspects IM2A_W09, IM2A_W12, IM2A_W03, IM2A_W19, IM2A_W08 Activity during classes,
Examination
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines IM2A_W09, IM2A_W13, IM2A_W03 Activity during classes,
Examination,
Test
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development IM2A_W12, IM2A_W03, IM2A_W18, IM2A_W17 Activity during classes,
Examination,
Test,
Participation in a discussion
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Others
E-learning
Social competence
M_K001 Student knows issues connected with energy industry, energy market and its influence on economy and society. + - - - - - - - - - -
Skills
M_U001 Has an ability of selection of materials for energy systems and aeronautics + - - - - + - - - - -
Knowledge
M_W001 Knows the issues concerning the energy and aeronautics, particularly related to thermal efficiency, economical and ecological aspects + - - - - + - - - - -
M_W002 Knows the structure of the flow engines, steam and gas turbines and jet aircraft engines + - - - - + - - - - -
M_W003 Has in-depth knowledge of materials used in the energy and aerospace industries, and the directions of their development + - - - - + - - - - -
Module content
Lectures:

1. Energy and aeronautic industry – current status and development. Criteria for the selection of materials for the energy and aeronautics applications.
2. Steels for steam power plant applications: development, characteristics and potential for future development of martensitic (9-12 % Cr) and austenitic steels.
3. Production of clean energy: near zero-emission steam power plants – membranes for CO2 and O2 separation, renewables.
4. Ni, Fe, Co – base wrought superalloys applications in energy systems, aeronautics and aerospace.Cast Ni-base superalloys for turbine blades, protective coatings (diffusion coatings, MCrYAl and TBC).
5. Titanium, aluminium and gamma TiAl intermetallics applications in energy and aeronautics industry.
6. Materials for fission and fusion reactors.
7. Composites for aeronautics and aerospace.
8. Materials for conversion and energy storage (fuel cells, Li-ion batteries).

Seminar classes:

1. Industrial steam and gas turbines, aircraft engines – construction and operation.
2. Selection of materials for aircraft engine components.
3. Martensitic steels for steam power plants.
4. Austenitic steels for steam power plants.
5. Wrought superalloys – microstructure and properties.
6. Cast nickel-base superalloys for gas turbine blades.
7. Heat resistant coatings on superalloys.
8. Titanium alloys for energy and aeronautics.
9. Aluminum alloys for the aerospace industry.
10. Structural intermetallics for energy and aerospace applications.
11. Materials for nuclear reactors components, tungsten alloys.
12. Composites for aeronautics.
13. Materials for renewable energy production.
14. Materials for energy conversion and storage (solid oxide fuel cells, Li-ion batteries).

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 89 h
Module ECTS credits 3 ECTS
Contact hours 10 h
Preparation for classes 10 h
Participation in seminar classes 28 h
Participation in lectures 14 h
Realization of independently performed tasks 25 h
Examination or Final test 2 h
Additional information
Method of calculating the final grade:

0,5 * ocena z zajęć seminaryjnych + 0,5 * ocena z egzaminu

Prerequisites and additional requirements:

Zgodnie z Regulaminem Studiów AGH podstawowym terminem uzyskania zaliczenia jest ostatni dzień zajęć w danym semestrze. Termin zaliczenia poprawkowego (tryb i warunki ustala prowadzący moduł na zajęciach początkowych) nie może być późniejszy niż ostatni termin egzaminu w sesji poprawkowej (dla przedmiotów kończących się egzaminem) lub ostatni dzień trwania semestru (dla przedmiotów niekończących się egzaminem).

Recommended literature and teaching resources:

Ashby M., Jones D.: Materiały inżynierskie, WNT, Warszawa, 1996.
Blicharski M.: Inżynieria Materiałowa Stal, WNT, Warszawa 2004.
Blicharski M.: Wstęp do inżynierii materiałowej, WNT, Warszawa, 2003.
Cahn R. W., Haasen P., Kramer E.J.: Materials Science and Technology, VCH, New York, tom 8, 1992.
Cempura G.: Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperaturę, PhD Thesis, AGH Kraków, 2012.
Czyrska-Filemonowicz A., Dubiel B., Wasilkowska A.: Żaroodporne i żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków, Fotobit, Kraków, 2004.
Czyrska-Filemonowicz A., Ennis P.J., Zielińska-Lipiec A.: High Chromium Creep Resistant Steels for Modern Steam Power Plant, rozdział w „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii PAN, K. Swiątkowski (ed.), Wydawnictwo Naukowe AKAPIT, Kraków, 2002, 193-217.
Dubiel B.: Zmiany mikrostruktury podczas pełzania monokrystalicznych nadstopów niklu, habilitation thesis, AGH Kraków, 2011.
Hernas A. (ed.): Materiały i technologie do budowy kotłów nadkrytycznych i spalarni odpadów, Wyd. SITPH, Katowice, 2009.
Hernas A., Dobrzański J.: Trwałość i niszczenie elementów kotłów i turbin parowych, Wydawnictwo Politechniki Śląskiej, 2003.
Luque A., Hegedus S., (ed.): Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Ltd, 2003.
Proceedings Int. Charles Parsons Turbine Conference on Advanced Materials for 21st Century Turbines and Power Plant, published by The Institute of Materials, London, UK, A. Strang et al. (ed.): 7th Conference in Glasgow, 11-13.09.2007, 8th Conference in Portsmouth, 5-8.09.2011.
Proceedings Int. Conference on Materials for Advanced Power Engineering in Liege, Belgium, published as the Reports of Forschungszentrum Jülich, J. Lecomte-Beckers et al. (ed.): 8th Conference 17-21.09.2006; 9th Conference, 27-29.09.2010., 10th Conference 14–17.09.2014
Nelson J.: The Physics of Solar Cells. Imperial College Press, 2003.
Reed R. C.: The Superalloys. Fundamental and applications, Cambridge University Press, 2006.
Rębiasz B., Orchel-Szeląg A., Czyrska-Filemonowicz A.: NewMat project – the answer to challenges related to the energy market development, Wydawnictwo Naukowe AKAPIT, Kraków 2014.
Rutkowski B.: Mechanical properties and microstructure of dense ceramic membranes for oxygen separation in zero-emission power plants, PhD thesis, AGH Kraków-RWTH Aachen, 2012.
Wenham S., Green M. (ed.): Applied Photovoltaics. 2nd ed. Routledge, 2006.
Wosik J.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2002.
Zielińska-Lipiec A.: Analiza stabilności mikrostruktury modyfikowanych stali martenzytycznych 9% Cr w procesie wyżarzania i pełzania, habilitation thesis, AGH Kraków, 2005.
Zielińska-Lipiec A.: Stale stosowane w energetyce konwencjonalnej i jądrowej – wybrane zagadnienia, in Press
Ziętara M.: Evaluation of the long-term microstructural stability of selected Ni-base superalloys, PhD thesis, AGH Kraków, 2011.

Scientific publications of module course instructors related to the topic of the module:

Rozprawy doktorskie i monografie:
1. K. Bryła – Zmiany mikrostruktury podczas pełzania nowej stali martenzytycznej na wirniki
turbin parowych, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH
Kraków, 2004
2. B. Rutkowski – Mechanical properties and microstructure of dense ceramic membranes for
oxygen separation in zero-emission power plants, (promotorzy: prof. T. Beck i prof. A.
Czyrska-Filemonowicz i prof. T. Beck), AGH i RWTH Aachen, 2012
3. A. Czyrska-Filemonowicz, P.J. Ennis, A. Zielińska-Lipiec – High Chromium Creep
Resistant Steels for Modern Steam Power Plant, rozdział w książce „Metallurgy on the Turn of the 20th Century”, Komitet Metalurgii Polskiej Akademii Nauk, K. Swiątkowski (red.), AKAPIT, Kraków, 2002, s. 193-217
4. A. Czyrska-Filemonowicz, B. Dubiel, A. Wasilkowska – monografia p.t. „Żaroodporne i
żarowytrzymałe stopy ODS umocnione nanocząstkami tlenków”, Wyd. Fotobit, 2004,
s.1-124
5. B. Rębiasz, A. Orchel-Szeląg, A. Czyrska-Filemonowicz – monografia p.t. “NewMat project- the answer to challenges related to the energy market development”, Wydawnictwo Naukowe Akapit, Kraków 2014, s. 1-107
6. G. Cempura, Low cycle fatigue behavior of a Ti-Al based intermetallic alloy at high temperature, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2012.
7. M. Ziętara – Microstructure stability of second and fourth generation single crystal nickel-base superalloys during high temperature creep deformation, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2011
8. J. Wosik – Evaluation of the long-term microstructural stability of selected Ni-base superalloys, rozprawa doktorska (promotor: prof. A. Czyrska-Filemonowicz), AGH Kraków, 2002.
Artykuły:
1. 4. J. Wosik, H. J. Penkalla, A. Czyrska-Filemonowicz – Waspaloy – stop na wirniki
nowoczesnych turbin parowych, Inżynieria Materiałowa, 4 (2002)163-167
2. G. Cempura, A. Kruk, C. Thomser, M. Wirtz, A. Czyrska-Filemonowicz – Microstructure
characterization of tungsten based alloys for fusion application, Archives of Metallurgy
and Materials, 58(2013)473-476
3. B. Rutkowski, J. Malzender, T. Beck, A Czyrska-Filemonowicz- Membrany dla
nowoczesnych elektrowni węglowych wytwarzających czystą energię, Hutnik-
Wiadomosci Hutnicze, 80(2013)274-279
1. A. Czyrska-Filemonowicz, B. Dubiel, M. Ziętara, A. Cetel – Development of single crystal Ni-based superalloys for advanced aircraft turbine blades”, Inżynieria Materiałowa, 3-4(2007)128-133.
2. G. Cempura, H. J. Penkalla, F. Schubert, A. Czyrska-Filemonowicz – Low Cycle Fatigue behavior and microstructure of 3rd generation TiAl based alloy, Inżynieria Materiałowa,175/3(2010)658-661.
3. M. Ziętara, A. Kruk, A. Gruszczyński, A. Czyrska-Filemonowicz – FIB-SEM tomography of 4th generation PWA 1497 superalloy, Materials Characterisation, 87(2014)143-148; JCR.
4. M. Zietara, A. Cetel, A. Czyrska-Filemonowicz: „Microstructure Stability of 4th Generation Single Crystal Superalloy, PWA 1497, during High Temperature Creep Deformation”, Materials Transactions, Vol. 52, No.03, 2011, s.336-339.

Additional information:

None