Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
X-ray physics
Tok studiów:
2018/2019
Kod:
JFM-2-025-DE-s
Wydział:
Fizyki i Informatyki Stosowanej
Poziom studiów:
Studia II stopnia
Specjalność:
Dozymetria i elektronika w medycynie
Kierunek:
Fizyka Medyczna
Semestr:
0
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Strona www:
 
Osoba odpowiedzialna:
prof. dr hab. inż. Lankosz Marek (Marek.Lankosz@fis.agh.edu.pl)
Osoby prowadzące:
prof. dr hab. inż. Lankosz Marek (Marek.Lankosz@fis.agh.edu.pl)
dr inż. Wróbel Paweł (Pawel.Wrobel@fis.agh.edu.pl)
Krótka charakterystyka modułu

Student has knowledge in scope of X-ray spectroscopy,

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W002 Student knows performance and technical parameters of methods based on x-rays Udział w dyskusji,
Odpowiedź ustna,
Egzamin,
Aktywność na zajęciach
M_W003 Student has knowledge about physical phenomenon’s and instrumentation used in modern analitical methods with the use of X-rays Udział w dyskusji,
Egzamin,
Aktywność na zajęciach
Umiejętności
M_U001 Student is able applied computer simulations and numerical methods to solve selected problems related to applications of physical methods based on x-rays Zaliczenie laboratorium,
Kolokwium,
Wykonanie ćwiczeń laboratoryjnych,
Sprawozdanie
M_U002 Student is able to raise information from literature, evaluate results of measurements, prepare report from experiments, and prepare multimedia presentation Sprawozdanie,
Prezentacja,
Udział w dyskusji,
Zaangażowanie w pracę zespołu
Kompetencje społeczne
M_K001 Student is able to cooperate in team, to become involve in discussion, evaluate results ofwork partners, is able to express personal arguments. Student understands the need for improving the qualifications and competence Udział w dyskusji,
Zaangażowanie w pracę zespołu,
Wykonanie ćwiczeń laboratoryjnych,
Egzamin,
Aktywność na zajęciach
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W002 Student knows performance and technical parameters of methods based on x-rays - - + - - - - - - - -
M_W003 Student has knowledge about physical phenomenon’s and instrumentation used in modern analitical methods with the use of X-rays + + - - - - - - - - -
Umiejętności
M_U001 Student is able applied computer simulations and numerical methods to solve selected problems related to applications of physical methods based on x-rays + - - - - - - - - - -
M_U002 Student is able to raise information from literature, evaluate results of measurements, prepare report from experiments, and prepare multimedia presentation - + + - - - - - - - -
Kompetencje społeczne
M_K001 Student is able to cooperate in team, to become involve in discussion, evaluate results ofwork partners, is able to express personal arguments. Student understands the need for improving the qualifications and competence + + + - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. History of X-rays -1h

    Introduction and basic principles

  2. Interaction of X-ray with matter- 4h

    X-ray polarization, photoelectric absorption, scattering, optical properties of X-ray,
    refraction of X-ray, total reflection

  3. Principles of X-ray emission and X-ray absorption spectroscopy-4h

    Characteristic X-ray, satellite lines, chemical shift, X-ray Absorption Near Edge
    Structure, Extended X-Ray Absorption Fine Structure, oxidation state, chemical
    environment of the absorbing atom.

  4. X-ray optics -2h

    Collimators and focusing systems, multilayer mirrors, capillary optics-transport of X-ray in capillaries, types of capillary lenses, refractive lenses, zone (Fresnel) lenses, curved crystals

  5. Production of X-ray -4h

    X-ray tubes-new developments, plasma X-ray sources, synchrotrons, X-ray free
    electron laser- XFEL

  6. Principles of X-ray microscopy and practical application in biomedical researches and electronics -3h

    Contact microscope, reflex microscope, projection microscope, and transmission
    scanning microscope, X-ray holography, Various applications.

  7. X-ray fluorescence elemental chemical macro/micro/nano imaging with the use of synchrotron radiation and conventional X-ray sources -4h

    Instrumentation, sample preparation

  8. Total reflection X-ray fluorescence analysis in live sciences and environmental protection – 2h

    Instrumentation, ltra-trace elemental analysis, analysis of toxic elements in human
    tissues and body fluids, application in environmental monitoring and assessment

  9. Investigation of the structure of bio-crystals, nanocrystals and clusters – 2h

    Introduction to protein structure measurements,X-ray difraction, principles od small angle x-ray scattering,investigation of structures of proteins, investigation of
    biochemical processes and chemical reaction kinetic

  10. X-ray lithography-2h

    Applications in electronics and mechanics

  11. X-ray in cosmos

    Sources of X-ray in cosmos. Satellities and x-ray telescopes

Ćwiczenia audytoryjne:
Seminar presentations

Subjects of seminar presentations;
1. Synchrotron radiation
2. Selected applications of synchrotron radiation
3. X-ray lasers
4. X-ray free electron laser
5. Selected applications of XANES technique
6. XRF method in environmental protection
7. XRF method in cultural heritage
8.Medical applications of x-rays
9. New developments in x-ray microscopy

Ćwiczenia laboratoryjne:
  1. Indroductory exercise -3h

    Familiarize students with safety regulations related with use of X-rays sources.

  2. Ultratrace elemental analysis with the use of TXRF method- 3h

    student is able to prepare samples of tissues and body fluids for analysis
    student is able to set-up X-ray spectrometer for measurements
    student is able to calibrate spectrometer
    student is able to interpret collected spectra, determine chemical composition of
    measured samples, calculated concentration of elements

  3. X-ray computerized tomography -3h

    student is able to set-up parameters of instrument for CT
    student is able to perform measurements with the use of T
    student is able to process collected data
    students is able to calculate linear absorption coefficients
    student is able to interpret result of measurements

  4. XRF analysis of environmental and biological samples – 3h

    student is able to prepare biological samples for measurements
    student is able to use X-ray spectrometer for measurements
    student is able to calibrate the spectrometer
    student is able to perform measurement
    student is able to calculate concentration of elements
    student is able to made budget of uncertainty

  5. XRF microanalysis-3h

    student is able to prepare samples for analysis
    student is able to set-up spectrometer for measurements
    student is able to perform measurements
    student is able to prepare maps of elements

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 159 godz
Punkty ECTS za moduł 6 ECTS
Egzamin lub kolokwium zaliczeniowe 4 godz
Udział w wykładach 30 godz
Udział w ćwiczeniach laboratoryjnych 15 godz
Udział w zajęciach seminaryjnych 15 godz
Przygotowanie do zajęć 25 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 30 godz
Samodzielne studiowanie tematyki zajęć 25 godz
Dodatkowe godziny kontaktowe z nauczycielem 15 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

Final grade (F) will be calculated in accordance to the following formula:
K = 0.6 x E + 0.2 x L + 0.2 x S
E-grade from exam
L-grade from laboratory
S-grade from seminar

Wymagania wstępne i dodatkowe:

Basic knowledge in physics and chemistry

Zalecana literatura i pomoce naukowe:

. A.C.Kak, M.Slaney,“Principles of Computerized Tomographic Imaging”. IEEE Press, 1987. 2000
2. A. Michette, S. Pfauntsch, X-Rays The First Hundred Years, John Wiley & Sons, 1997.
3. N. A. Dyson, Promieniowanie rentgenowskie w fizyce atomowej i jądrowej, PWN, 1978.
4. R. V. Grieken, A. Markowicz, Handbook of X-Ray Spectrometry, Marcel Dekker, 1993.
5. K. A. Janssens, F.C. Adams, A. Rindby, Microscopic X-ray Fluorescence Analysis, John Wiley & Sons,
2000.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

M.Czyżycki, P.Wróbel, M.Lankosz
Confocal X-ray fluorescence micro-spectroscopy experiment in tilted geometry
Spectrochimica Acta Part B, 97 (2014) 99–104
A.Wandzilak, M.Czyżycki, P.Wróbel, M.Szczerbowska-Boruchowska, E.Radwańska, D.Adamek, M.Lankosz
The oxidation states and chemical environments of iron and zinc as potential indicators of brain tumour
malignancy grade – preliminary results.
Metallomics, 5 (2013) 1547-1553
M.Lankosz, M.Grzelak, B.Ostachowicz, A.Wandzilak, M.Szczerbowska-Boruchowska, P.Wrobel,
E.Radwanska, D.Adamek
Application of the total reflection X-ray fluorescence method to the elemental analysis of brain tumors
of different types and grades of malignancy
Spectrochimica Acta Part B, 101 (2014) 98–105

Informacje dodatkowe:

Absence in laboratory classes should be executed in agreement with teacher