Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Bioceramics
Tok studiów:
2018/2019
Kod:
CIM-2-203-FM-s
Wydział:
Inżynierii Materiałowej i Ceramiki
Poziom studiów:
Studia II stopnia
Specjalność:
Functional Materials
Kierunek:
Inżynieria Materiałowa
Semestr:
2
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Strona www:
 
Osoba odpowiedzialna:
prof. dr hab. inż. Ślósarczyk Anna (aslosar@agh.edu.pl)
Osoby prowadzące:
prof. dr hab. inż. Ślósarczyk Anna (aslosar@agh.edu.pl)
dr inż. Zima Aneta (azima@agh.edu.pl)
dr inż. Czechowska Joanna (jczech@agh.edu.pl)
Krótka charakterystyka modułu

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student knows the classification of ceramic biomaterials and scope of their application in medicine. IM2A_W03, IM2A_W15 Egzamin
M_W002 Student knows and understands the concepts associated with the production of bioceramics (raw materials, molding methods, methods of sintering, final treatment and sterilization). IM2A_W02, IM2A_W14 Egzamin
M_W003 Student knows and understands manufacturing technologies of various forms of bioceramic implant materials (powders, granules, dense and porous implants, coatings) IM2A_W03, IM2A_W14 Egzamin
M_W004 Student knows the principles for the assessment of physico-chemical and biological ceramic implants in vitro and in vivo. IM2A_W04 Egzamin
Umiejętności
M_U001 Student is able to design materials to fill bone defects, that differ in composition, microstructure and mechanical strength. IM2A_U04, IM2A_U02, IM2A_U08, IM2A_U11 Prezentacja
M_U002 Student can propose methods to assess physicochemical and biological properties of ceramic implant materials and bioceramic composites. IM2A_U02, IM2A_U08, IM2A_U16 Prezentacja
Kompetencje społeczne
M_K001 The student is aware of the therapeutic effects and the possible side effects of implant materials used in bone substitution IM2A_K08, IM2A_K02, IM2A_K06 Aktywność na zajęciach
M_K002 The student knows the roles of bone substitutes, the principles for their selection and design. Student understands the importance of biomaterials engineering for medicine and economy. IM2A_K07, IM2A_K06 Aktywność na zajęciach
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W001 Student knows the classification of ceramic biomaterials and scope of their application in medicine. + - - - - + - - - - -
M_W002 Student knows and understands the concepts associated with the production of bioceramics (raw materials, molding methods, methods of sintering, final treatment and sterilization). + - - - - + - - - - -
M_W003 Student knows and understands manufacturing technologies of various forms of bioceramic implant materials (powders, granules, dense and porous implants, coatings) + - - - - + - - - - -
M_W004 Student knows the principles for the assessment of physico-chemical and biological ceramic implants in vitro and in vivo. + - - - - + - - - - -
Umiejętności
M_U001 Student is able to design materials to fill bone defects, that differ in composition, microstructure and mechanical strength. - - - - - + - - - - -
M_U002 Student can propose methods to assess physicochemical and biological properties of ceramic implant materials and bioceramic composites. - - - - - + - - - - -
Kompetencje społeczne
M_K001 The student is aware of the therapeutic effects and the possible side effects of implant materials used in bone substitution - - - - - + - - - - -
M_K002 The student knows the roles of bone substitutes, the principles for their selection and design. Student understands the importance of biomaterials engineering for medicine and economy. - - - - - + - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. History of bioceramics.

    The history of preparation and application of ceramic implant materials in medicine. First, second and third generation of ceramic biomaterials. The significance of bioceramics for orthopedics, maxillofacial surgery and dentistry.

  2. The structure of bone. Ceramic and composite bone substitutes.

    Bone as a natural composite. Requirements for bone substitutes. Advantages and disadvantages of ceramic bone substitutes.Techniques to combine implants with bone. The importance of bone/implant interface.

  3. Types of bioceramics- classification criteria.

    Characteristics and applications of various forms of ceramic implants (powders, granules, dense, porous materials, and materials with the surface porosity, functionally graded materials).

  4. Manufacturing, physicochemical and biological evaluation of sintered and chemically bonded bioceramics.

    Methods of manufacturing (raw materials, forming, sintering, final treatment, sterilization). Evaluation of microstructure, porosity, mechanical strength, cohesion, chemical stability, biodegradability, biocompatibility and bioactivity.

  5. Inert, bioactive and resorbable bioceramics.

    Bioactive glasses, glass-ceramics and ceramics. The significance of bioactivity, biodegradability and tendency to resorption. Mechanisms of bioactivity. Criteria of bone implant materials selection.

  6. Dense and porous alumina ceramics.

    Alumina powders, methods for the preparation of dense and porous alumina implants. The range of applications of alumina bioceramics in medicine.

  7. Oxide bioceramics on the basis of ZrO2 and TiO2.

    The role of T-M phase transition in developing the physicochemical and biological properties of bioceramics on the basis of ZrO2. ZrO2-Al2O3 based composites (ZTA, ATZ). TiO2-based materials for medical applications – form and properties.

  8. Calcium phosphate based bioceramics.

    Bioceramics on the basis on: hydroxyapatite (HA, whitlockite (β-TCP) and biphasic HA-β-TCP bioceramics (BCP) manufacturing, properties, applications in medicine. New trends in research on CaPs bioceramics.

  9. Bone cements.

    The reason for application of composites in medicine. The inorganic-organic composites. Hybrid materials.

  10. Bioceramics for dentistry.

    Types of bone cements. Advantages and disadvantages of PMMA and calcium phosphate cements. Requirements for bone cements. Methods of designing rheological parameters and setting times of cement pastes. New generation of bone cements.

  11. Glass-ceramics and bioglasses.

    Application of ceramics in dentistry, dental implant prosthetics, orthodontics, endodontics, periodontics and maxillofacial surgery. Types of dental cements. Properties and range of applications of: dental porcelain, dental oxide ceramics and glass-ceramic materials in dentistry. Bioceramics in guided tissue regeneration.

  12. Ceramic coatings on metallic implants.

    The aim and methods of coating. Characteristics and criteria of coatings evaluation (thickness, phase composition, microstructure, adhesion to the substrate, durability).

  13. Ceramic homogeneous and heterogeneous drug carriers.

    Types of drug carriers. Mechanisms of drug release. The importance and selection of ceramics materials for topical administration of drug.

  14. Biomimetics.

    Patterns from nature in technology and biomaterials engineering. Natural structures – laminates and FGM. Natural composites. The significance of bioceramics for tissue engineering.

Zajęcia seminaryjne:
  1. Porous ceramic implant materials – the range and function of porosity in medical applications.
  2. The significance of hybrid materials for implantology.
  3. The importance of gypsum as an implant material.
  4. Bioceramics for dental application.
  5. Bioceramics in the treatment of bone diseases and injuries. The importance of biomimetics in manufacturing of implant materials.
  6. Principles for selecting materials for implantology.
  7. In vitro and in vivo evaluation of bioceramics.
  8. Methods of forming and heat treatment of bone implants. The function of rapid prototyping techniques.
  9. Hydroxyapatite based bioceramics for orthopedic, dentistry and maxillofacial surgery.
  10. Development, properties and range of applications of whitlockite based bioceramics.
  11. The significance of composites for medicine.
  12. Oxide bioceramics.
  13. Glass-ceramics for implantology.
  14. Factors determining behavior of ceramic implant materials in vivo.
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 60 godz
Punkty ECTS za moduł 2 ECTS
Udział w ćwiczeniach audytoryjnych 15 godz
Udział w konwersatoriach 15 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 15 godz
Przygotowanie do zajęć 15 godz
Samodzielne studiowanie tematyki zajęć 0 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

0,5*examination grade+0,5*seminaries grade

Wymagania wstępne i dodatkowe:

Basic knowledge of chemistry, biology and materials engineering.

Zalecana literatura i pomoce naukowe:

1.„Biomateriały t. IV” praca zbiorowa pod red. S. Błażewicza i L. Stocha, wyd. Exit Warszawa 2003
2.Z. Jaegermann, A.Ślósarczyk „Gęsta i porowata bioceramika korundowa w zastosowaniach medycznych” UWND AGH-Kraków 2007
3.R.B.Heimann " Clasic and advanced ceramics" VILEY- VCH Verlag GmbH & Co. 2010
4.B.D.Ratner,A.S.Hofmann,F.J.Schoen,J.E.Lemons" Biomaterials Science. An Introduction to Materials in Medicine" Elsevier- Academic Press, 2013
5.F. Nadachowski, S.Jonas, W.Ptak „Wstęp do projektowania technologii ceramicznych” UWND AGH-Kraków 1999
6. "Inżynieria Biomateriałów Engineering of Biomaterials”
7.“Biomaterials”
8.“Journal of Materials Science. Materials in Medicine”

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. Borkowski L., Pawłowska M., Radzki R.P., Bieńko M., Polkowska I., Belcarz A., Karpiński M., Słowik T., Matuszewski Ł., ŚLÓSARCZYK A., Ginalska G. ,Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits., Materials Science and Engineering C (2015) 1;53:60-67. (IF=2,736)

2. Mróz W., Budner B., Syroka R., Niedzielski K., Golański G., ŚLÓSARCZYK A., Schwarze D., Douglas T. E. L., In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser deposition, Journal of Biomedical Materials Research. Part B, Applied Biomaterials (2015) 103 1: 151–158. (2,328)

3. Kolmas J., Jabłoński M., ŚLÓSARCZYK A., Kolodziejski W., Solid-State NMR Study of Mn2+ for Ca2+ Substitution in Thermally Processed Hydroxyapatites, Journal of the American Ceramic Society (2015) 98: 1265–1274. (IF=2,428)

4. Kolmas J., Kaflak A., Zima A., ŚLÓSARCZYK A., Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization, Ceramics International (2015) 41(4) 5727-5733.(IF=2,110)

5. Czechowska J., Zima A., Paszkiewicz Z., Lis J., ŚLÓSARCZYK A., Physicochemical properties and biomimetic behaviour of α−TCP−chitosan based materials, Ceramics International (2014) 404: 5523–5532.(IF=2,110)

6. Paluszkiewicz C., Czechowska J., ŚLÓSARCZYK A., Paszkiewicz Z., Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy, Journal of Molecular Structure (2013) 1034; 289–295. (IF=1,585)

7. Zima A.,Paszkiewicz Z., Siek D., Czechowska J., ŚLÓSARCZYK A., Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite, Ceramics International (2012) 386 4935–4942.

8. ŚLÓSARCZYK A., Bioceramika hydroksyapatytowa, Prace Komisji Nauk Ceramicznych, Polski Biuletyn Ceramiczny nr 13, Polskie Towarzystwo Ceramiczne, Kraków 1997

Informacje dodatkowe:

Brak