General information:
Name:
Advanced materials modelling
Code:
int.courses-177
Profile of education:
Academic (A)
Lecture language:
English
Semester:
Spring, Fall
Responsible teacher:
dr hab. inż. Filipek Robert (rof@agh.edu.pl)
Module summary

Fundamental knowledge on phenomenological modelling and numerical methods.
Formulation and solution of selected inverse problems.
Application of COMSOL Multiphysics to solution of selected mass, energy and momentum problems in 1D, 2D and 3D geometries.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Skills: he can
M_U001 Solution of selected mass, heat and momentum transport in 1D, 2D and 3D geometry using Comsol Multiphysics. Execution of a project,
Execution of exercises
M_U002 Solution of selected mass, heat and momentum transport problems in 1D geometry using VBA or C/C++. Execution of exercises
Knowledge: he knows and understands
M_W001 Fundamental knowledge on phenomenological modelling and numerical methods. Examination
M_W002 The inverse problems - formulation. Methods of solution. Examination
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 10 0 0 0 0 20 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Skills
M_U001 Solution of selected mass, heat and momentum transport in 1D, 2D and 3D geometry using Comsol Multiphysics. - - - - - + - - - - -
M_U002 Solution of selected mass, heat and momentum transport problems in 1D geometry using VBA or C/C++. - - - - - + - - - - -
Knowledge
M_W001 Fundamental knowledge on phenomenological modelling and numerical methods. + - - - - - - - - - -
M_W002 The inverse problems - formulation. Methods of solution. + - - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 107 h
Module ECTS credits 4 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 h
Preparation for classes 25 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 20 h
Realization of independently performed tasks 30 h
Examination or Final test 2 h
Module content
Lectures (10h):

1) Selected ordinary and partial differential equations used in design and technology of materials.

2) Mass, energy and momentum balance equations. Constitutive equations. Initial and boundary conditions.

3) Steady-state and non-steady-state (evolutional) problems.

4) Specialized software for solving of mass, energy and momentum transport.

5) Numerical methods of solving of boundary and initial-boundary-value problems in materials science (finite difference method, method of lines, finite element methods, finite volume method).

6) Inverse problems and optimization tasks in materials science and methods of theirs solving.

7) Specialized software for solving inverse problems and optimization.

8) Methods and tools of parallel programming. Use of multiprocessor computers, clusters and advanced computer techniques for solving problems in materials science.

Seminar classes (20h):

Solutions of selected problems in materials science using specialized software: Comsol Multiphysics, C/C++, VBA Excel in 1D, 2D i 3D geometries: gradient materials, ion-selective membranes, carbonation of steel, corrosion of rebars in concrete, ionic channels transport, optimization of furnace lining geometry bezed on thermocouple readings, diffusion soldering of electronic materials.

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Seminar classes: Na zajęciach seminaryjnych podstawą jest prezentacja multimedialna oraz ustna prowadzona przez studentów. Kolejnym ważnym elementem kształcenia są odpowiedzi na powstałe pytania, a także dyskusja studentów nad prezentowanymi treściami.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

The necessary conditions for obtaining the course credit are:
1. Presence at least 75% of lectures
2. Obtaining a grade of at least 3.0 from the seminar

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Seminar classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci prezentują na forum grupy temat wskazany przez prowadzącego oraz uczestniczą w dyskusji nad tym tematem. Ocenie podlega zarówno wartość merytoryczna prezentacji, jak i tzw. kompetencje miękkie.
Method of calculating the final grade:

0.5*exam_note+0.5*seminar_note

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Each case will be discussed individually.

Prerequisites and additional requirements:

Basic skills in C/C++, VBA programing.

Recommended literature and teaching resources:

1. M. Rappaz, M. Bellet, M. Deville, R. Snyder, Numerical Modelling in Materials Science and Engineering, Springer 2003.
2. H.P. Langtangen, Computational Partial Differential Equations, Springer; 2nd Ed. 2003.
3. A. Quarterioni, Numerical Models for Differential Problems, Springer 2009.
4. M.E. Glicksman, Diffusion in Solids, JohnWiley & Sons 2000.
5. D. Britz, Digital Simulation in Electrochemistry, Springer, 3rd Ed. 2005.
6. R.W. Balluffi, S.A. Allen, W.C. Carter, Kinetics of Materials, JohnWiley & Sons 2005.

Scientific publications of module course instructors related to the topic of the module:

1. R. Filipek, “Interdiffusion in Multi-Component Systems Showing Variable Intrinsic Diffusivities”, Solid State Phenomena, 72, (2000), 165-170.
2. B. Bożek, R. Filipek, K. Holly, C.Mączka, “Distribution of Temperature in Three-Dimmensional Solids”, Opuscula Mathematica, 20, (2000) 27-40.
3. J. Nowacki, M. Danielewski, R. Filipek, “Brazed joints evaluation and computer modelling of mass transport in multi-component systems in the AuNi solder-14-5 PH joints”, J. Mat. Proc. Techn., 157-158, (2004), 213-220.
4. J. J. Jasielec, R. Filipek, K. Szyszkiewicz, J. Fausek, M. Danielewski, A. Lewenstam, „Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations”, Computational Materials Science, 63, (2012),75–90.
5. A. Wierzbicka-Miernik, K. Miernik, J. Wojewoda-Budka, K. Szyszkiewicz, R. Filipek, L. Litynska-Dobrzyńska, A. Kodentsov, P. Zięba, „Growth kinetics of the intermetallic phase in diffusion-soldered Cu-5 at.%Ni/Sn/Cu-5 at.%Ni interconnections, Materials Chemistry and Physics, 142 (2–3), (2013), 682–685.
6. K. Szyszkiewicz, J. J. Jasielec, M. Danielewski, A. Lewenstam, R. Filipek, “Modeling of Electrodiffusion Processes from Nano to Macro Scale”, Journal of The Electrochemical Society, 164 (11), (2017), E3559–E3568.
7. R. Filipek, Modeling and inverse methods in materials engineering, Wydawnictwo Naukowe AKAPIT, Kraków, 2019.

Additional information:

None