Module also offered within study programmes:
General information:
Name:
Applied mechanics
Course of study:
2019/2020
Code:
RIME-2-222-WM-s
Faculty of:
Mechanical Engineering and Robotics
Study level:
Second-cycle studies
Specialty:
Wytwarzanie mechatroniczne
Field of study:
Mechatronic Engineering
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
dr hab. inż, prof. AGH Cieślik Jacek (cieslik@agh.edu.pl)
Module summary

1st and 3rd Newton laws. Moment a force. Moments of areas, moments of inertia. Friction – Coulomb model. Work. Kinematics of particle and rigid body. General plane, spherical and free rigid body motion. Dynamics of particles. Main and central moments of inertia. Momentum, angular momentum. Work, power, efficiency, kinetic and potential energy. Equivalence of kinetic energy and work. Dynamics of rigid body in translation, rotation, plane motion. Lagrange equations. SDOF vibration.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 understanding of the need and knowledge of the possibility of constant individual learning to improve professional, personal and social competence awareness of the responsibility for own work and readiness to comply with the rules of team work ability to correctly set priorities in meeting objectives Activity during classes,
Examination,
Oral answer,
Participation in a discussion,
Execution of exercises
Skills: he can
M_U001 ability to evaluate the usefulness of routine methods and tools for solving simple engineering tasks and select and apply proper methods and tools Activity during classes,
Examination,
Test,
Execution of exercises,
Test results
M_U002 ability to acquire information from literature, databases and other sources, integrate, select and interpret the information, draw conclusions, formulate and justify opinions ability to develop documentation related to the completion of an engineering task and prepare text discussing the results of the task ability to prepare and give a brief presentation of the results of the engineering task completed Activity during classes,
Examination,
Test,
Execution of exercises,
Test results
Knowledge: he knows and understands
M_W001 well-ordered and theory-based knowledge of technical mechanics necessary for formulating and solving problems in mechatronics Activity during classes,
Examination,
Test,
Execution of exercises,
Test results
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
45 30 15 0 0 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 understanding of the need and knowledge of the possibility of constant individual learning to improve professional, personal and social competence awareness of the responsibility for own work and readiness to comply with the rules of team work ability to correctly set priorities in meeting objectives - + - - - - - - - - -
Skills
M_U001 ability to evaluate the usefulness of routine methods and tools for solving simple engineering tasks and select and apply proper methods and tools - + - - - - - - - - -
M_U002 ability to acquire information from literature, databases and other sources, integrate, select and interpret the information, draw conclusions, formulate and justify opinions ability to develop documentation related to the completion of an engineering task and prepare text discussing the results of the task ability to prepare and give a brief presentation of the results of the engineering task completed - + - - - - - - - - -
Knowledge
M_W001 well-ordered and theory-based knowledge of technical mechanics necessary for formulating and solving problems in mechatronics + + - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 147 h
Module ECTS credits 5 ECTS
Udział w zajęciach dydaktycznych/praktyka 45 h
Preparation for classes 50 h
Realization of independently performed tasks 50 h
Examination or Final test 2 h
Module content
Lectures (30h):

asic axioms in mechanics. 1st and 3rd Newton laws, constraints, two force theorem, three forces theorem, polygon of forces, resolving a force into two and three directions, resultant of forces. System of parallel forces, concurrent forces, general system of forces, force couple, moment of couple, moment of a force with respect to origin and with respect to an axis. Cases of forces reduction – parallel, concurrent and coplanar force system, arbitrary force system, plain trusses. Centroid, moments of areas, moments of inertia, mass center. Friction – Coulomb model, static, kinetic, rolling, resistance of motion. Work, principle of virtual work, degrees of freedom, virtual displacement, possible and impossible states of equilibrium in force field. Methods of motion description for point, velocity, acceleration. Kinematics of relative motion of particle, velocity, acceleration. Position coordinates and orientation of rigid body in three dimensional space, homogeneous transformation. Velocity and acceleration of rigid body (linear and angular) – rotation about fixed axis, relative motion of rigid body, Coriolis acceleration. General plane motion, rotation about the fixed point, spherical motion, free rigid body motion.
Dynamics of free and constrained particles. Classification of constraints. Relative motion dynamics. System of particles. Centre of mass motion principle. Mass moments of inertia. Steiner’s theorem. Main and central moments of inertia. Momentum, impulse of a force, angular momentum, conservation laws for momentum and angular momentum. Principles of dynamics for a particle and for a system of particles. Work, power, efficiency, kinetic and potential energy. Equivalence principle of kinetic energy and work. Energy conservation law. Conservative force fields. Dynamic equations of motion for solid body in translation, rotation, plane motion and rotation about a fixed point. Collision of solids. Spherical and general motion of a rigid body. Approximate theory of a gyroscope Lagrange equations of 2nd kind. Undamped and damped linear SDOF vibration. Vibration isolation.

Auditorium classes (15h):

asic axioms in mechanics. 1st and 3rd Newton laws, constraints, two force theorem, three forces theorem, polygon of forces, resolving a force into two and three directions, resultant of forces. System of parallel forces, concurrent forces, general system of forces, force couple, moment of couple, moment of a force with respect to origin and with respect to an axis. Cases of forces reduction – parallel, concurrent and coplanar force system, arbitrary force system, plain trusses. Centroid, moments of areas, moments of inertia, mass center. Friction – Coulomb model, static, kinetic, rolling, resistance of motion. Work, principle of virtual work, degrees of freedom, virtual displacement, possible and impossible states of equilibrium in force field. Methods of motion description for point, velocity, acceleration. Kinematics of relative motion of particle, velocity, acceleration. Position coordinates and orientation of rigid body in three dimensional space, homogeneous transformation. Velocity and acceleration of rigid body (linear and angular) – rotation about fixed axis, relative motion of rigid body, Coriolis acceleration. General plane motion, rotation about the fixed point, spherical motion, free rigid body motion.
Dynamics of free and constrained particles. Classification of constraints. Relative motion dynamics. System of particles. Centre of mass motion principle. Mass moments of inertia. Steiner’s theorem. Main and central moments of inertia. Momentum, impulse of a force, angular momentum, conservation laws for momentum and angular momentum. Principles of dynamics for a particle and for a system of particles. Work, power, efficiency, kinetic and potential energy. Equivalence principle of kinetic energy and work. Energy conservation law. Conservative force fields. Dynamic equations of motion for solid body in translation, rotation, plane motion and rotation about a fixed point. Collision of solids. Spherical and general motion of a rigid body. Approximate theory of a gyroscope Lagrange equations of 2nd kind. Undamped and damped linear SDOF vibration. Vibration isolation.

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Auditorium classes: Podczas zajęć audytoryjnych studenci na tablicy rozwiązują zadane wcześniej problemy. Prowadzący na bieżąco dokonuje stosowanych wyjaśnień i moderuje dyskusję z grupą nad danym problemem.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Participation in the classes is obligatory. Positive assessment of the classes and the test is a necessary condition for admission to the exam.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Auditorium classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci przystępując do ćwiczeń są zobowiązani do przygotowania się w zakresie wskazanym każdorazowo przez prowadzącego (np. w formie zestawów zadań). Ocena pracy studenta może bazować na wypowiedziach ustnych lub pisemnych w formie kolokwium, co zgodnie z regulaminem studiów AGH przekłada się na ocenę końcową z tej formy zajęć.
Method of calculating the final grade:

Weighted average of marks from written test, end-of-term test and examination.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Two excused absences from the practice classes are permitted. . The method of settling the backlog by the student and credit for the absence from the practice classes is determined each time by the lecturer conducting the classes.

Prerequisites and additional requirements:

Knowledge of mathematics(trigonometry, vector calculus, differential calculus) and physics

Recommended literature and teaching resources:

Beer F.P., Johnston E.R.: Vector Mechanics for Engineers. Statics and Dynamics. McGraw Hill. Boston eds 1997 – 2012.
Hibbeler R. C.: Engineering Mechanics: Statics, 13th Edition, Prentice Hall, 2013
Hibbeler R. C.: Engineering Mechanics: Dynamics, 13th Edition, Prentice Hall, 2013
McGill D., King W.: Mechanics. PWS Engineering, Boston 1985.
Meriam J.L.,Kraige L.G.: Engineering Mechanics, DYNAMICS, 6 edition, Wiley, 2006

Optional books for Polish students (in Polish):
1. Engel Z., Giergiel J., Statyka. Wyd. 3. AGH Uczelniane Wydaw. Naukowo-Dydaktyczne, 2000, Kraków.
2. Engel Z., Giergiel J., Dynamika. Wyd. 3. AGH Uczelniane Wydaw. Naukowo-Dydaktyczne, 1998, Kraków.
3. Leyko J., Statyka i kinematyka. Wyd. 8. Wydaw. Nauk. PWN, 1996 Warszawa.
4. Leyko J., Dynamika. Wyd. 7. Wydaw. Nauk. PWN, 1996 Warszawa.
5. Niezgodziński M., Niezgodziński T., Zbiór zadań z mechaniki ogólnej Wydaw. Nauk. PWN, 1997,
Warszawa.

Scientific publications of module course instructors related to the topic of the module:

Additional scientific publications not specified

Additional information:

None