Module also offered within study programmes:
General information:
Name:
Thermodynamics
Course of study:
2019/2020
Code:
RIME-2-216-WM-s
Faculty of:
Mechanical Engineering and Robotics
Study level:
Second-cycle studies
Specialty:
Wytwarzanie mechatroniczne
Field of study:
Mechatronic Engineering
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
prof. dr hab. Janik Jerzy (janikj@agh.edu.pl)
Module summary

Student will acquire a general knowledge of the laws of thermodynamics including the related concepts of different forms of energy and will be able to perform essential calculations in this area.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 Student understands the need for continuous learning/stydying various aspects of thermodynamics as of science that reflects the fundamental laws of Nature. IME2A_K02, IME2A_U06 Activity during classes,
Examination,
Participation in a discussion
Skills: he can
M_U001 Student will be able to perform all essential calculations in the area of the laws of thermodynamics as applied in various practical applications. Activity during classes,
Examination,
Execution of exercises,
Test results
Knowledge: he knows and understands
M_W001 Student will acquire a general knowledge of thermodynamics, including the laws of thermodynamics, definitions of state functions and their interrelations. Activity during classes,
Examination,
Execution of exercises
M_W002 Student will gain fundamental knowledge about work, heat, internal energy, ethalpy, entropy, Gibbs and Helmholtz energies stressing their application potentials. Activity during classes,
Examination,
Execution of exercises,
Test results
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
45 30 15 0 0 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 Student understands the need for continuous learning/stydying various aspects of thermodynamics as of science that reflects the fundamental laws of Nature. + + - - - - - - - - -
Skills
M_U001 Student will be able to perform all essential calculations in the area of the laws of thermodynamics as applied in various practical applications. - + - - - - - - - - -
Knowledge
M_W001 Student will acquire a general knowledge of thermodynamics, including the laws of thermodynamics, definitions of state functions and their interrelations. + + - - - - - - - - -
M_W002 Student will gain fundamental knowledge about work, heat, internal energy, ethalpy, entropy, Gibbs and Helmholtz energies stressing their application potentials. + + - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 135 h
Module ECTS credits 5 ECTS
Udział w zajęciach dydaktycznych/praktyka 45 h
Preparation for classes 45 h
Realization of independently performed tasks 45 h
Module content
Lectures (30h):
  1. Introduction – basic properties and definitions

    SI and non-SI base units. Thermodynamics vs. kinetics. Definition of a thermodynamic system. Open and isolated, homogeneous, and heterogeneous systems. Extensive and intensive properties of a system. Standard states and state variables. Equilibrium as a definite state.

  2. The thermodynamic concept of temperature or the zeroth law of thermodynamics

    State of thermal equilibrium. Equations of state. Ideal gas laws and the ideal gas temperature scale. Dalton’s law for ideal gas mixtures. Real gases and the virial equation. P-V-T relationships for a one-component system. Triple point and critical point. The Van der Waals equation and the compressibility factor for gases.

  3. First law of thermodynamics or the law of conservation of energy

    Definitions and interrelations of work, internal energy, and heat. Joule’s experiments. The first law of thermodynamics and internal energy. Various kinds of work. Joule-Thomson expansion. Heat capacities Cp and Cv. Adiabatic processes with gases. Thermochemistry; exothermic and endothermic reactions. Enthalpy of formation. Temperature dependence of enthalpy.

  4. Second law of thermodynamics – spontaneity and reversibility of a process

    Spontaneous and non-spontaneous changes. Carnot cycle. Thermodynamic temperature. Expressions of the second law. The fundamental equation for a closed system. Entropy for reversible and irreversible processes. Entropy of mixing ideal gases. Entropy and statistical probability. Calorimetric determination of entropies.

  5. The third law of thermodynamics or the value of entropy at absolute zero

    Standard reaction entropies. Entropy changes for phase changes and chemical reactions – examples.

  6. Helmholtz energy, A, and Gibbs energy, G

    Legendre transforms. Thermodynamic functions for closed systems. Thermodynamic equations of state. Effect of temperature and pressure on the Gibbs energy. Fundamental
    equations for open systems. The additivity relation for the Gibbs energy. Partial molar quantities. The activity.

Auditorium classes (15h):
  1. Introduction; basic properties and definitions

    Interconversion of SI and non-SI base units. Values of gas constant R. Mole fractions and partial pressures.

  2. The thermodynamic concept of temperature or the zeroth law of thermodynamics

    Pressure and molar volume for ideal and real gases; comparison of the ideal gas law, virial equation, and the van der Waals equation.

  3. The first law of thermodynamics or the law of conservation of energy

    Work of compression/expansion of a gas. Changes in internal energy and enthalpy on heating. Work and internal energy changes in adiabatic processes. Standard enthalpy changes for reactions. Enthalpy of reactions at different temperatures. Calculations of bond energies.

  4. The second law of thermodynamics; spontaneity and reversibility of a process; the third law of thermodynamics or the value of entropy at absolute zero

    Changes in entropy of a gas in various processes (e.g. vaporization, heating at constant and variable pressures). Examples of entropy changes in irreversible processes via a reversible path from the initial state to the final state. Calculations of entropy of mixing. Determination of the entropy of a substance relative to its entropy at 0 K.

  5. Helmholtz energy, A and Gibbs energy, G

    Derivation of Maxwell relations. Calculations of molar thermodynamic quantities ∆U, ∆H, ∆G, ∆A, and ∆S for ideal gas expansion and gas mixing. Molar entropy and internal energy of isothermal expansion of a van der Waals gas. Activity of a substance at different pressures.

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Auditorium classes: Podczas zajęć audytoryjnych studenci na tablicy rozwiązują zadane wcześniej problemy. Prowadzący na bieżąco dokonuje stosowanych wyjaśnień i moderuje dyskusję z grupą nad danym problemem.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Auditorium classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci przystępując do ćwiczeń są zobowiązani do przygotowania się w zakresie wskazanym każdorazowo przez prowadzącego (np. w formie zestawów zadań). Ocena pracy studenta może bazować na wypowiedziach ustnych lub pisemnych w formie kolokwium, co zgodnie z regulaminem studiów AGH przekłada się na ocenę końcową z tej formy zajęć.
Method of calculating the final grade:

Written 2-part examination both from theory and auditorium class.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Prerequisites and additional requirements:

Prior course in mathematics (especially,concepts/calculations of integrals and differentials).

Recommended literature and teaching resources:

1. Robert A. Alberty, Robert J. Silbey Physical Chemistry, Second Edition; John Wiley & Sons, Inc.,New York 1996.
2. Robert A. Alberty, Robert J. Silbey Solutions Manual to Accompany Physical Chemistry, Second Edition; John Wiley & Sons, Inc., New York 1996.

Scientific publications of module course instructors related to the topic of the module:

Additional scientific publications not specified

Additional information:

None