Module also offered within study programmes:
General information:
Name:
Nanomaterials and nanotechnology
Course of study:
2019/2020
Code:
RIME-2-217-WM-s
Faculty of:
Mechanical Engineering and Robotics
Study level:
Second-cycle studies
Specialty:
Wytwarzanie mechatroniczne
Field of study:
Mechatronic Engineering
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
dr Kryshtal Oleksandr (kryshtal@agh.edu.pl)
Module summary

This is an introductory course which covers the fundamental topics of nano- physics and engineering and provides the foundation for understanding the properties and behavior of materials at nanoscale.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Skills: he can
M_U001 Student can critically assess the promise of nanomaterials. Participation in a discussion,
Execution of laboratory classes,
Activity during classes,
Examination
M_U002 Has practical skills in conducting the entire cycle of scientific experiment: from fabrication of nanostructures to their characterization. Completion of laboratory classes,
Execution of laboratory classes
Knowledge: he knows and understands
M_W001 Knows the key methods of synthesis and characterization of nanomaterials. Execution of laboratory classes,
Activity during classes,
Examination
M_W002 Has essential scientific background for understanding the properties and behavior of materials with reduced dimensions. Activity during classes,
Examination
M_W003 Has understanding of several size effects in nanomaterials Presentation,
Activity during classes,
Examination
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
56 28 0 16 0 0 12 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Skills
M_U001 Student can critically assess the promise of nanomaterials. - - + - - - - - - - -
M_U002 Has practical skills in conducting the entire cycle of scientific experiment: from fabrication of nanostructures to their characterization. - - + - - - - - - - -
Knowledge
M_W001 Knows the key methods of synthesis and characterization of nanomaterials. + - + - - - - - - - -
M_W002 Has essential scientific background for understanding the properties and behavior of materials with reduced dimensions. + - + - - + - - - - -
M_W003 Has understanding of several size effects in nanomaterials + - + - - + - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 150 h
Module ECTS credits 6 ECTS
Udział w zajęciach dydaktycznych/praktyka 56 h
Preparation for classes 34 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 20 h
Realization of independently performed tasks 33 h
Examination or Final test 2 h
Contact hours 5 h
Module content
Lectures (28h):

Highly interdisciplinary field of nanoscience and nanotechnology are among the fastest growing areas of modern science. At nanometer length scale all properties of materials (mechanical, thermal, electrical, magnetic, optical, catalytic, etc.) drastically differ from the macroscopic ones and new physical phenomena are observed. This is a key feature of all nanomaterials which enables to design of principally new materials and devices with unique features.
This is an introductory course which covers the fundamental topics of nano- physics and engineering and provides the foundation for understanding the properties and behavior of materials at nanosized scale. It introduces major methods of synthesis and characterization of nanomaterials as well as discusses the effect of size on selected properties of materials with reduced dimensions. The course includes laboratory practice with hands-on experience on synthesis and characterization of nanomaterials and interpretation of data, to consolidate the knowledge acquired during lections.

Lecture topics:

  1. Nanomaterials and Nanotechnology: the state of the art and the challenges
  2. Classes of nanomaterials
  3. Carbon-based Nanomaterials: Nanotubes, Graphene, Fullerenes
  4. Synthesis of Nanostructures
  5. Characterization of Nanomaterials
  6. Size Effects and Physical Properties of Nanomaterials

Laboratory classes (16h):

1. Production of Thin Films by Means of PVD Technique.
2. Electron Microscopy Characterization of Nanomaterials.

Seminar classes (12h):

1. Methods for Fabrication of Nanostructures
2. Selected Properties of Low-dimensional Materials
3. Applications of Nanomaterials

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Laboratory classes: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
  • Seminar classes: Na zajęciach seminaryjnych podstawą jest prezentacja multimedialna oraz ustna prowadzona przez studentów. Kolejnym ważnym elementem kształcenia są odpowiedzi na powstałe pytania, a także dyskusja studentów nad prezentowanymi treściami.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Laboratory classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.
  • Seminar classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci prezentują na forum grupy temat wskazany przez prowadzącego oraz uczestniczą w dyskusji nad tym tematem. Ocenie podlega zarówno wartość merytoryczna prezentacji, jak i tzw. kompetencje miękkie.
Method of calculating the final grade:

Open-book final examination (50%) + three seminars (8% each) + group project (26%)

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Prerequisites and additional requirements:

Basic knowledge of solid state physics, materials science and thermodynamics.

Recommended literature and teaching resources:
  1. R. W. Cahn, P. Haasen, E. J. Kramer, Materials Science and Technology: a comprehensive treatment, VCH, New York, 1992.
  2. G. Cao, Y. Wang, Nanostructures and nanomaterials: Synthesis properties and applications (2nd ed.) World Scientific, Singapore, 2011.
  3. F. C. Campbell, Phase Diagrams: Understanding the Basics, ASM International, 2012.
  4. D. L. Schodek, P. Ferreira, M. F. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, Butterworth-Heinemann, 2009.
Scientific publications of module course instructors related to the topic of the module:

1. A. P. Kryshtal, A. A. Minenkov, P. J. Ferreira – Interfacial Kinetics in Nanosized Au/Ge Films: an in Situ TEM study, Applied Surface Science, 409(2017)343-349;
2. F. Mao, M. Taher, O. Kryshtal, A. Kruk, A. Czyrska-Filemonowicz, M. Ottosson, A.M. Andersson, U. Wiklund, U. Jansson – A combinatorial study of gradient Ag-Al thin films: microstructure, phase formation, mechanical and electrical properties, ACS Applied Materials & Interfaces, 8(44)(2016)330635-330643
3. K. Zawadzka, E. Godlewska, K. Mars, M. Nocuń, A. Kryshtal, A. CzyrskaFilemonowicz – Enhancement of oxidation resistance of CoSb3 thermoelectric material by glass coating, Materials Design, 119(2017)65-75;
4. S. Dukarov, A. Kryshtal and V. Sukhov, “Surface energy and wetting in island films” in M. Aliofkhazraei ed. Surface Energy and Wetting (DOI: 10.5772/60900), InTech, 2015. http://www.intechopen.com/books/wetting-and-wettability/surface-energy-and-wetting-in-island-films
5. N. O. Mchedlov-Petrossyan, N. N. Kamneva, E. Ōsawa, A. I. Marinin, S. T. Goga, V. V. Tkachenko, A. P. Kryshtal, Colloidal Solution of 3 nm Bucky Diamond: Primary Particles of Detonation Nanodiamond // Physics of Liquid Matter: Modern Problems, Editors L. Bulavin and N. Lebovka, Springer Proceedings in Physics, 2015, 374p.
6. E.V. Popova, S.A. Gamzaeva, А.I. Krivoshey, A.P. Kryshtal, A.P. Fedoryako, M.F. Prodanov, M.A. Kolosov and V.V. Vashchenko, “Dielectric properties of magnetic nanoparticles’ suspension in a ferroelectric liquid crystal”, Liquid Crystals, 42, 334-343 (2015)
7. A.P. Kryshtal, S.I. Bogatyrenko, R.V. Sukhov, A.A. Minenkov, “The Kinetics of the Formation of a Solid Solution in an Ag-Pd Polycrystalline Film System”, Applied Physics A, 116, 4, 1891-1896 (2014)
8. A.P. Kryshtal, “Formation of Island Arrays by Melting of Bi, Pb and Sn Continuous Films on Si Substrate”, Appl. Surf. Sci. 321, 548–553 (2014)
9. A.A. Minenkov, S.I. Bogatyrenko, R.V. Sukhov, A.P. Kryshtal, “Size Dependence of the Activation Energy of Diffusion in Multilayer Cu-Ni Films”, Physics of the Solid State, 56, 823-826 (2014)
10. M.F. Prodanov, N.V. Pogorelov, A.P. Kryshtal, A.S. Klymchenko, Y. Mely, V.P. Semynozhenko, A.I. Krivoshey, Y.A. Reznikov, S.N. Yarmolenko, I.W. Goodby, V.V. Vashchenko, “Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal”, Langmuir 29 (30), 9301 (2013)
11. A.P. Kryshtal, R.V. Sukhov, A.A. Minenkov, “Critical Thickness of Contact Melting in the Au/Ge Layered Film System”, Journal of Alloys and Compounds, 512, 311– 315, (2012)
12. N.T. Gladkikh, S.I. Bogatyrenko, O.P. Kryshtal, R. Anton, “Melting Point Lowering of Thin Metal Films (Me = In, Sn, Bi, Pb) in Al/Me/Al Film System”, Applied Surface Science, 219, 338–346 (2003)

Additional information:

None