Module also offered within study programmes:
General information:
Name:
Nanosatellite attitude determination and control
Course of study:
2019/2020
Code:
RIME-2-206-SI-s
Faculty of:
Mechanical Engineering and Robotics
Study level:
Second-cycle studies
Specialty:
Systemy inteligentne
Field of study:
Mechatronic Engineering
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
dr hab. inż. Gallina Alberto (agallina@agh.edu.pl)
Module summary

Theoretical understanding of fundamentals of satellite dynamics enforced by hands-on experience provided by students’ projects.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 Organization of the work inside a team Execution of a project
M_K002 Avoid conflicts inside a team Execution of a project
Skills: he can
M_U001 Fundamentals of numerical tools for the analysis of space missions Activity during classes
M_U002 Ability to design, manufacture and assemble an attitude determination and control system for small satellite Project
M_U003 Ability of reporting and presenting work carried out Presentation
Knowledge: he knows and understands
M_W001 Knowledge of general aspects of Space missions Activity during classes
M_W002 Knowledge of fundamentals of orbital mechanics Completion of laboratory classes
M_W003 Knowledge of dynamics of rigid body in three dimensions Completion of laboratory classes
M_W004 Knowledge of principal solutions of systems for attitude determination control system Examination
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
60 20 0 18 22 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 Organization of the work inside a team - - - + - - - - - - -
M_K002 Avoid conflicts inside a team - - - + - - - - - - -
Skills
M_U001 Fundamentals of numerical tools for the analysis of space missions - - + - - - - - - - -
M_U002 Ability to design, manufacture and assemble an attitude determination and control system for small satellite - - - + - - - - - - -
M_U003 Ability of reporting and presenting work carried out - - - + - - - - - - -
Knowledge
M_W001 Knowledge of general aspects of Space missions + - - - - - - - - - -
M_W002 Knowledge of fundamentals of orbital mechanics + - - - - - - - - - -
M_W003 Knowledge of dynamics of rigid body in three dimensions + - - - - - - - - - -
M_W004 Knowledge of principal solutions of systems for attitude determination control system + - - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 170 h
Module ECTS credits 6 ECTS
Udział w zajęciach dydaktycznych/praktyka 60 h
Preparation for classes 20 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 90 h
Module content
Lectures (20h):
  1. General picture (4h)

    • Introduction to the subject
    • Short history of spaceflights
    • How far is the space and how to get there
    • Space environment
    • Satellite mission phases
    • Satellite subsystems

  2. Orbital dynamics and mission design (6h)

    • Kepler’s laws
    • Keplerian Orbital Elements
    • Types of orbits (LEO, Geosynchronous, Geostationary, etc.)
    • Orbital propagation (Keplerian, secular J2)
    • Ground station communication windows
    • Satellite instrument coverage
    • Understanding sun visibility on different orbits

  3. Satellite attitude dynamics (6h)

    • Vector operations
    • Reference frames
    • Rotational Kinematics
    • Euler angles
    • Quaternions
    • Dynamics of a particle
    • Dynamics of a system of particles
    • Dynamics of a rigid body

  4. Satellite attitude determination and control (4h)

    • Disturbance Torques
    • Sensors (Sun sensor, star tracker, horizon sensor, magnetometer, gyro)
    • Passive systems (gradient, spin stabilization)
    • Active system (reaction wheels, magnetorquers, thrusters)
    • Avionics testing facilities

Laboratory classes (18h):
  1. Matlab exercises on attitude dynamics (6h)

    • Vector operation
    • Rotational Kinematics
    • Torque free attitude motion
    • SIMMECH implementation

  2. ADCS implementations (4h)

    • Example of TRIAD algorithm
    • B-dot detumbler

  3. AGI STK (4h)

    • Calculating ground station visibility periods
    • Calculation of sensor coverage
    • Simulation of Sun energy availability

  4. Celestlab (6h)

    • Basic orbital propagators
    • Understanding ground-tracks

Project classes (22h):
  1. Introduction (2h)

    • Team division
    • Workflow organization
    • System overview
    • Mission summary
    • Program schedule
    • System requirement summary

  2. SatLab description (2h)

    • Lab test rig
    • SatLab system physical layout
    • SatLab subsystems

  3. Project assignment (2h)

    • Project’s tasks assignment
    • Hardware requirements
    • Software requirements

  4. Design (10h)

    • Team work
    • Trainer support

  5. Assembling (2h)

    • B-dot algorithm review
    • Coils design review
    • Hardware printing and assembling

  6. Testing (2h)

    • Experimental tests
    • Experimental-numerical comparison
    • Analysis of error

  7. Final presentation (2h)

    • Project’s presentation
    • Lesson learned

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Laboratory classes: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
  • Project classes: Studenci wykonują zadany projekt samodzielnie, bez większej ingerencji prowadzącego. Ma to wykształcić poczucie odpowiedzialności za pracę w grupie oraz odpowiedzialności za podejmowane decyzje.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

All students who have taken part to the practical experimental part are allowed to write the examination.
The realization of the project is the necessary condition for writing the exam and receiving a final grade.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Laboratory classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.
  • Project classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci wykonują prace praktyczne mające na celu uzyskanie kompetencji zakładanych przez syllabus. Ocenie podlega sposób wykonania projektu oraz efekt końcowy.
Method of calculating the final grade:
  • Attendance to the lessons : 15% of final grade
  • Final examination : 25% of final grade
  • Project presentation and report : 60%
Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Students are provided with notes from the lectures and laboratory classes. The material should be enough to recover the lack of knowledge resultant form the absence.
In the case of justified absence to the project classes, the student will be supported to repeat practical experiments in another date.

Prerequisites and additional requirements:
  • Basic knowledge of MATLAB
Recommended literature and teaching resources:
  • Notes of the course.
  • Howard Curtis, Orbital Mechanics for Engineering Students, Elsevier Aerospace Engineering Series.
  • Peter Fortescue, Graham Swinerd, John Stark, Spacecraft Systems Engineering, Wiley.
  • Roger Bate, Donald Mueller, Jerry White, Fundamentals of Astrodynamics, Dover.
  • Anton De Ruiter, Schristopher Damaren, James Forbes, Spacecraft Synamics and Control An Introduction, Wiley.
Scientific publications of module course instructors related to the topic of the module:

Additional scientific publications not specified

Additional information:

The subject is divided into two main parts. Initially, the theoretical background and numerical tools for simulating satellite attitude control system are presented. Next, acquired knowledge is applied to a mechatronic project that aims to design, manufacture and assemble the missing part of an attitude control system of a small satellite simulator (SatLab). Eventually, students will test the fully integrated SatLab on the existing ADCS testrig and compare results with numerical simulations previously carried out.

Main part of the lectures will be held by prof. Karol Seweryn from CBK – Space Research Centre, Polish Academy of Sciences.