Module also offered within study programmes:
General information:
Name:
Mechanics of robots
Course of study:
2019/2020
Code:
RAIR-2-206-AM-n
Faculty of:
Mechanical Engineering and Robotics
Study level:
Second-cycle studies
Specialty:
Automatic Control and Metrology
Field of study:
Automatics and Robotics
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Part-time studies
Course homepage:
 
Responsible teacher:
dr hab. inż. Lisowski Wojciech (lisowski@agh.edu.pl)
Module summary

Module concerns modelling of kinematics and statics of manipulating and mobile robots mainly for purpose of control synthesis. Students train mathematical models’ formulation, numerical simulation and results’ elaboration.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 Can work in a team respecting partition of duties and responsibilities AIR2A_K01 Report,
Execution of laboratory classes
Skills: he can
M_U001 Can formulate and solve the direct and the inverse kinematic problem for manipulators with use of appropriate software tools AIR2A_U05 Report,
Execution of laboratory classes,
Test results
M_U002 Can prepare and present reports on engineering solutions in English AIR2A_U02 Report
M_U003 Ability to use methods and mathematical models and computer simulations to analyze and assess the operation of mechatronic equipment and systems AIR2A_U05 Activity during classes,
Report,
Execution of laboratory classes
Knowledge: he knows and understands
M_W001 Knows principles of kinematic modelling of manipulators and planning of joint trajectories, and understands problem of pose singularity, knows principles of kinematic modelling and trajectory planning of mobile robots AIR2A_W03, AIR2A_W04 Report,
Execution of laboratory classes,
Test results
M_W002 Knowledge of metrology, knowledge and understanding of the methods of measuring basic physical quantities, knowledge of computational methods and IT tools necessary to analyse experiment results AIR2A_W02 Activity during classes,
Report,
Execution of laboratory classes
M_W003 Well-ordered knowledge of microprocessor systems, basics of IT science, programming methods and techniques AIR2A_W02 Activity during classes,
Report,
Execution of laboratory classes
M_W004 English language skills sufficient to communicate and read data sheets, application notes, manuals of the components of mechatronic systems, IT tools and other similar documents AIR2A_U02 Report,
Execution of laboratory classes
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
24 14 0 10 0 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 Can work in a team respecting partition of duties and responsibilities - - + - - - - - - - -
Skills
M_U001 Can formulate and solve the direct and the inverse kinematic problem for manipulators with use of appropriate software tools - - + - - - - - - - -
M_U002 Can prepare and present reports on engineering solutions in English - - + - - - - - - - -
M_U003 Ability to use methods and mathematical models and computer simulations to analyze and assess the operation of mechatronic equipment and systems - - + - - - - - - - -
Knowledge
M_W001 Knows principles of kinematic modelling of manipulators and planning of joint trajectories, and understands problem of pose singularity, knows principles of kinematic modelling and trajectory planning of mobile robots + - - - - - - - - - -
M_W002 Knowledge of metrology, knowledge and understanding of the methods of measuring basic physical quantities, knowledge of computational methods and IT tools necessary to analyse experiment results - - + - - - - - - - -
M_W003 Well-ordered knowledge of microprocessor systems, basics of IT science, programming methods and techniques - - + - - - - - - - -
M_W004 English language skills sufficient to communicate and read data sheets, application notes, manuals of the components of mechatronic systems, IT tools and other similar documents - - + - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 75 h
Module ECTS credits 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 24 h
Preparation for classes 19 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 15 h
Realization of independently performed tasks 17 h
Module content
Lectures (14h):
  1. Manipulator kinematics and statics

    Intoduction. Position and orientation. Joint trajectories. Manipulator direct kinematics. Open kinematic chain manipulator inverse kinematics. Spatial trajectory. Velocity and acceleration, differential relationships. Jacobian matrix. End-effector pose singularity. Manipulator statics

  2. Wheeled robots kinematics and trajectory planning

    Introduction in to mobile robot applications. Mobile robots in indoor solutions. Mobile robots in outdoor solutions. Control architecture description. Inverse kinematics solution for path planning. Path planning algorithms. Navigation of the mobile robots. SLAM techniques in mobile robots.

Laboratory classes (10h):
  1. Manipulator Kinematics and Statics

    Manipulator forward kinematics. Manipulator Inverse Kinematics. Joint trajectory planning

  2. Wheeled robots kinematics and trajectory planning

    Control architecture description and tests. Inverse kinematics solution for path planning. Path planning algorithms application. Navigation of the mobile robots – odometry calculations. SLAM techniques in mobile robots application.

  3. Final test

    Final test

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Laboratory classes: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Laboratory classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.
Method of calculating the final grade:

Final grade: assessment of reports (70%), classwork (10%), final test mark (20%)

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Prerequisites and additional requirements:

Prerequisites and additional requirements not specified

Recommended literature and teaching resources:

G. Cook, Mobile Robots: Navigation, Control and Remote Sensing, 2011
K. S. Fu, R. Gonzalez, C.S.G. Lee, “Robotics control, sensing, vision, and intelligence”, Mc Graw Hill 2008
J. L. Jones, B. A. Seiger, A. M. Flynn, Mobile Robots: Inspiration to Implementation, Second Edition, 1998.
B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, “Robotics: Modelling, Planning and Control (Advanced Textbooks in Control and Signal Processing)”, Springer 2010
R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza, Introduction to Autonomous Mobile Robots
(Intelligent Robotics and Autonomous Agents series), 2011
M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot Modeling and Control”, John Wiley and Sons, Inc., 2005

Scientific publications of module course instructors related to the topic of the module:

Buratowski T., Giergiel J., Uhl T., Burghard A., The autonomous group of robots precise navigation, Polish Journal of Environmental Studies vol. 20 no. 5A, pp. 35–40, 2011
Buratowski T., Cieślak P., Giergiel J., Uhl T., A self-stabilising multipurpose single-wheel robot, Journal of Theoretical and Applied Mechanics; vol. 50 no. 1, s. 99–118, 2012
Introduction to robotics, Praca zbiorowa pod red. W. Lisowskiego, Wydawnictwa Naukowo-Dydaktyczne AGH, 2004

Additional information:

None