Module also offered within study programmes:
General information:
Name:
Modern physics
Course of study:
2019/2020
Code:
GBUD-2-107-GE-s
Faculty of:
Mining and Geoengineering
Study level:
Second-cycle studies
Specialty:
Geotechnical Engineering and Underground Construction
Field of study:
Civil Engineering
Semester:
1
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Course homepage:
 
Responsible teacher:
dr hab. Woch Wiesław Marek (wmwoch@agh.edu.pl)
Module summary

Major discoveries of modern physics and their applications.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 The student understands the need for continuous updating and broadening of their knowledge of modern physics used in the techniques and technology in the professional field BUD2A_K02 Activity during classes,
Presentation,
Participation in a discussion
Skills: he can
M_U001 The student is able to find a link between modern physics and the experimental techniques used in the field and applied technology BUD2A_U04 Activity during classes,
Presentation,
Participation in a discussion
M_U002 Student can find literature concerning a physics-related problem in the field of their specialty, understand the essence of the problem, and develop a presentation explaining the problem to listeners BUD2A_U03 Activity during classes,
Presentation,
Participation in a discussion
Knowledge: he knows and understands
M_W001 The student knows the basic concepts of quantum mechanics and knows that understanding the equipment they currently use, and which they will use in the near future, requires knowledge of quantum mechanics at the elementary level. BUD2A_W03 Activity during classes,
Presentation,
Participation in a discussion
M_W002 The student knows that modern physics is widely used in everyday life. BUD2A_W01 Activity during classes,
Presentation,
Participation in a discussion
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 15 15 0 0 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 The student understands the need for continuous updating and broadening of their knowledge of modern physics used in the techniques and technology in the professional field + + - - - - - - - - -
Skills
M_U001 The student is able to find a link between modern physics and the experimental techniques used in the field and applied technology + + - - - - - - - - -
M_U002 Student can find literature concerning a physics-related problem in the field of their specialty, understand the essence of the problem, and develop a presentation explaining the problem to listeners + + - - - - - - - - -
Knowledge
M_W001 The student knows the basic concepts of quantum mechanics and knows that understanding the equipment they currently use, and which they will use in the near future, requires knowledge of quantum mechanics at the elementary level. + + - - - - - - - - -
M_W002 The student knows that modern physics is widely used in everyday life. + + - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 75 h
Module ECTS credits 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 h
Preparation for classes 15 h
Realization of independently performed tasks 30 h
Module content
Lectures (15h):

1. Introduction: Major discoveries of modern physics and their applications
2. Basics of quantum mechanics
a. Diffraction of electrons and neutrons
b. Wave function and Schroedinger equation
c. Heisenberg’s uncertainty principle
d. Two types of particles: fermions and bosons.
e. Electron states in:
- Potential well
- Hydrogen atom
- Multielectron atoms
- Metal
f. Periodic table of elements
3. Quantum computers
4. Methods of recording information
a. Bit record
b. Design of hard drive (HD)
c. Magnetism
d. Recording information on HD
- Faraday’s law of induction
- giant magnetoresistance (GMR)
e. Solid State Memory (Pen Drive)
5. Superconductivity and its use
a. Two kinds of particles; Bose-Einstein condensation
b. Liquefying air and the discovery of superconductivity
c. What causes the resistance of metals
d. Meissner effect
e. Type I and II superconductors
f. High-temperature superconductivity
g. The use of superconductivity
6. Alternative energy sources: nuclear energy
7. Alternative sources of energy: solar and hydrogen fuel cells
a. Why we need new sources of energy: climate change
b. Nuclear power
- Splitting atomic nuclei: nuclear reaction; reaction in the fuel rod
- Synthesis of nuclei
- Nuclear power: hazards
- Power amplifiers
c. Solar energy
d. Hydrogen power
8. Cosmology and the standard model
a. Redshift
b. Background radiation
c. The big bang
d. Accelerating expansion: Nobel 2011
e. Basics of the standard model
- Leptons, quarks, hadrons
- Intermediate bosons
- The problem of particle masses (Higgs boson)
f. Experimental verification of the Standard Model:
- Observation of Higgs boson at CERN
- The problem of neutrino masses

Auditorium classes (15h):

Each student prepares and then presents a discussion on one of the following topics:

Characteristics of the planets of the Solar System
Structure and evolution of stars
Evolution and structure of the Universe
The discovery and interpretation of the CMB radiation
Nuclear radioactivity
Detectors of nuclear radiation
Nuclear reactors
Fusion reactors
The use of solar energy and hydrogen fuel cells
X-rays
Black body radiation
Internal and external photoelectric effect
Michelson and Morley experiment
Lorentz transformation and its consequences
Bohr’s theory of hydrogen atom
Electron diffraction. De Broglie waves. Compton’s effect
Crystals – crystalline bonds
Insulators and metals – band theory for solids
Semiconductors and semiconductor devices
Masers and lasers, principle of operation and applications
Superconductivity
Accelerators
Hall effect and its application
Schrodinger equation and the uncertainty principle
Quantum description of a hydrogen atom
Pauli exclusion principle. Multielectron atoms
Elementary particles – assumptions of the standard model
Vaccum technology, preparing and gauging the vacuum
Temperature measurement methods.
Preparation and measurement of magnetic fields
Modern methods of studying seismic waves
Physical basis of modern medical techniques
Nanotechnologies
The unique properties of graphene
Fuel cells
Spin electronics (spintronics) based on the example of GMR and TMR
Tunneling and the scanning tunneling microscope

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Auditorium classes: Podczas zajęć audytoryjnych studenci na tablicy rozwiązują zadane wcześniej problemy. Prowadzący na bieżąco dokonuje stosowanych wyjaśnień i moderuje dyskusję z grupą nad danym problemem.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

A positive evaluation of the classes is required to pass the course and obtain a final evaluation. Credit is obtained within the primary deadline and one retake. Detailed assessment rules are agreed by the lecturers at the beginning of the semester.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Auditorium classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci przystępując do ćwiczeń są zobowiązani do przygotowania się w zakresie wskazanym każdorazowo przez prowadzącego (np. w formie zestawów zadań). Ocena pracy studenta może bazować na wypowiedziach ustnych lub pisemnych w formie kolokwium, co zgodnie z regulaminem studiów AGH przekłada się na ocenę końcową z tej formy zajęć.
Method of calculating the final grade:

The final grade is primarily made up of the credit from classes, but also depends on the activity at the lecture and the attendance at lectures.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Excused absence from classes can be made up for with another group, with the consent of both lecturers, and provided that the class covers the same topic.

Prerequisites and additional requirements:

Introductory course in general physics

Recommended literature and teaching resources:

P.A. Tipler, R.A. Llewellyn, Modern Physics, W.H. Freeman and Company, 2008
R. Harris, Modern Physics, Pearson, 2007
J. Pfeffre, S. Nir, Modern Physics, 2001
https://en.wikibooks.org/wiki/Modern_Physics

Scientific publications of module course instructors related to the topic of the module:

Adam Bzdak, Piotr Bożek, and Larry McLerran, Nucl. Phys. A927, 15, 2014.
Piotr Bozek, Wojciech Broniowski, and Giorgio Torrieri, Phys. Rev. Lett. 111, 172303, 2013.
Piotr Bozek, Phys.Rev. C85, 014911, 2012.

Additional information:

A positive evaluation of the classes is required to pass the course and obtain a final evaluation