Module also offered within study programmes:
General information:
Name:
Mechanical Response of Engineering Materials
Course of study:
2019/2020
Code:
MIMT-2-234-s
Faculty of:
Metals Engineering and Industrial Computer Science
Study level:
Second-cycle studies
Specialty:
-
Field of study:
Materials Science
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Responsible teacher:
prof. dr hab. inż. Majta Janusz (majta@metal.agh.edu.pl)
Module summary

Słuchacz będzie w stanie analizować oraz projektować procesy wytwarzania i eksploatacji elementów oraz materiałów konstrukcyjnych z punktu widzenia ich własności mechanicznych.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Skills: he can
M_U001 - an ability to use the techniques, skills, and experimental, computational and data analysis tools necessary for materials engineering practice. Effective communication skills regarding the mechanical response of materials. Scientific paper,
Activity during classes
Knowledge: he knows and understands
M_W001 - an ability to apply knowledge of mathematics, science, and engineering to problems in materials engineering. Conversant with conventional nomenclature, units and notation of mechanical behavior. - an ability to estimate relative ranges and values for important properties of common engineering materials. Activity during classes
M_W002 - an ability to identify, formulate, and solve engineering problems, particularly in the context of materials selection and design. - an ability to design a program of evaluation to isolate particular mechanisms and describe their contributions and possible interactions. Activity during classes,
Participation in a discussion
M_W003 - Gain an understanding of how crystalline materials can be strengthened. Test
M_W004 - Optimize the alloy design, thermomechanical processing and heat treatment for the applicable mechanical application of the alloy and metal. Activity during classes,
Scientific paper
M_W005 - Understand metallurgical and mechanical aspects of forming of metals into useful shapes and properties. - an ability to propose novel mechanisms for mechanical response. Apply the mechanisms of deformation to component design or alloy design. Activity during classes,
Participation in a discussion
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
42 14 0 0 0 0 28 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Skills
M_U001 - an ability to use the techniques, skills, and experimental, computational and data analysis tools necessary for materials engineering practice. Effective communication skills regarding the mechanical response of materials. + - - - - + - - - - -
Knowledge
M_W001 - an ability to apply knowledge of mathematics, science, and engineering to problems in materials engineering. Conversant with conventional nomenclature, units and notation of mechanical behavior. - an ability to estimate relative ranges and values for important properties of common engineering materials. + - - - - + - - - - -
M_W002 - an ability to identify, formulate, and solve engineering problems, particularly in the context of materials selection and design. - an ability to design a program of evaluation to isolate particular mechanisms and describe their contributions and possible interactions. + - - - - + - - - - -
M_W003 - Gain an understanding of how crystalline materials can be strengthened. + - - - - - - - - - -
M_W004 - Optimize the alloy design, thermomechanical processing and heat treatment for the applicable mechanical application of the alloy and metal. + - - - - - - - - - -
M_W005 - Understand metallurgical and mechanical aspects of forming of metals into useful shapes and properties. - an ability to propose novel mechanisms for mechanical response. Apply the mechanisms of deformation to component design or alloy design. + - - - - + - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 84 h
Module ECTS credits 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 42 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 10 h
Realization of independently performed tasks 30 h
Examination or Final test 2 h
Module content
Lectures (14h):

The course will be focused on the fundamental mechanisms that operate at micro- and nano-meter level across a wide-range of engineering materials, in a way that is mathematically simple and requires no extensive knowledge of materials. This integrated approach provides a conceptual presentation that shows how the microstructure of a material controls its mechanical behavior. This course encompasses deformation-based microscopic mechanisms, including dislocation motion, diffusion, and viscoplasticity. Macroscopic mechanical response of engineering materials, first of all metals and alloys will be related to elasticity and plasticity concepts for single crystal and polycrystalline materials. Practical design considerations for deformation will be included as well as an introduction to fracture mechanisms. Also, the manufacturing component of the module introduces students to the general methodologies involved in carrying out a metal forming operation. The methodologies of how microstructure can be significantly improved via thermomechanical processing are investigated and aim to build insight into the operation and capabilities of metal forming techniques. Finally the methods of predicting life of components subjected to complex and extreme loading conditions, such as fatigue and dynamic or explosive loading are examined and explored. The modeling and simulation section then investigates advanced practical methods of describing performance.

Seminar classes (28h):

• How to use applied mathematics and continuum mechanics in the mechanical assessment of materials. Stress, strain, yield strength, fracture strength. Yield criteria, flow rules, creep, fracture
• Yield strength ranges for ductile metals. Plastic deformation mechanisms.
• Relate microstructure to properties of crystalline solids. Strengthening mechanisms in crystalline solids.
• Effective presentation of data in figures and tables. Describe data regarding deformation and failure of materials and relate it to the expected behavior based on well established models or theories.
• Understand metallurgical and mechanical aspects of forming of metals into useful shapes and properties. How will the material change shape for the applied deformation? What kind of deformation mechanism will operate? Which slip system(s) will be operative?
• Dislocation glide, cross-slip, dislocation climb, precipitation strengthening. Nabarro-Herring creep. Plane strain fracture

Additional information
Teaching methods and techniques:
  • Lectures: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Seminar classes: Na zajęciach seminaryjnych podstawą jest prezentacja multimedialna oraz ustna prowadzona przez studentów. Kolejnym ważnym elementem kształcenia są odpowiedzi na powstałe pytania, a także dyskusja studentów nad prezentowanymi treściami.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Szczegółowe warunki zaliczenia ustala i podaje do wiadomości studentom prowadzący zajęcia na pierwszych zajęciach.
Obecność na wykładach jest zalecana.
Zaliczenie zajęć audytoryjnych może być uzyskane w terminie podstawowym oraz jednym terminie poprawkowym. Obecność na zajęciach jest obowiązkowa. Podstawą zaliczenia ćwiczeń audytoryjnych są kolokwia. Usprawiedliwioną nieobecność na zajęciach można odrobić z inną grupą (jeżeli jest) lub w inny sposób określony przez prowadzącego.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: No
    – Participation rules in classes: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Seminar classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Studenci prezentują na forum grupy temat wskazany przez prowadzącego oraz uczestniczą w dyskusji nad tym tematem. Ocenie podlega zarówno wartość merytoryczna prezentacji, jak i tzw. kompetencje miękkie.
Method of calculating the final grade:

średnia ważona (kolokwium z wykładów 0.4 plus zalicznie z seminarium 0.6)

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Obecność na zajęciach audytoryjnych jest obowiązkowa. Usprawiedliwioną nieobecność na zajęciach można odrobić z inną grupą (jeżeli jest) lub w inny sposób określony przez prowadzącego. Student, który opuścił więcej niż 2 zajęcia i są one nieusprawiedliwione jest traktowany jak student, który nie uczęszczał na zajęcia.

Prerequisites and additional requirements:

Brak

Recommended literature and teaching resources:

G.E. Dieter, Mechanical Metallurgy, McGraw Hill Publishing Co., New York.
M.A. Meyers and K. Chawla, Mechanical Behavior of Materials, Prentice Hall
T. H. Courtney. Mechanical Behavior of Materials, Second Edition.
(Waveland Press, Inc.: Long Grove, IL) 2000, 2005
M.F. Ashby and D.R.H. Jones, Engineering Materials 1, Butterworth-Heinemann
M.A. Mayers, Dynamic Behavior of Materials, John Wiley & Sons, New York, 1994

Scientific publications of module course instructors related to the topic of the module:

http://www.bpp.agh.edu.pl/
Janusz MAJTA, Krzysztof MUSZKA, Łukasz MADEJ, Marcin KWIECIEŃ, Paulina GRACA Study of the effects of micro- and nanolayered structures on mechanical response of microalloyed steels, Manufacturing Science and Technology ; ISSN 2333-2735. — 2015 vol. 3 no. 4, s. 134–140.

Dmytro S. SVYETLICHNYY, Krzysztof MUSZKA, Janusz MAJTA Three-dimensional frontal cellular automata modeling of the grain refinement during severe plastic deformation of microalloyed steel, Computational Materials Science ; ISSN 0927-0256. — 2015 vol. 102, s. 159–166.

Paulina GRACA, Krzysztof MUSZKA, Janusz MAJTA, Łukasz MADEJ Multiscale modelling of precipitation strenghtening effects in microalloyed steel subjected to cyclic deformation , MS&T15: Materials Science & Technology : October 4–8, 2015, Columbus, USA -ISBN: 978-0-87339-764-3. — S. 579–586.

Janusz MAJTA, Krzysztof MUSZKA, Łukasz MADEJ, Konrad PERZYŃSKI Modeling the influence of deformation-induced microstructural inhomogeneity on the mechanical response of precipitation strengthened multilayered materials : STEELSIM 2015 International conference on Modelling and simulation of metallurgical processes in steelmaking : Bardolino, Garda Lake, Italy, 23-25 September 2015. Associazione Italiana di Metallurgia, 2015. — Dysk Flash. — ISBN: 97888898990054. 1-10

Krzysztof MUSZKA, Marcin KWIECIEŃ, Janusz MAJTA, Eric J. Palmiere, Comparative analysis of precipitation effects in microalloyed austenite ferrite under hot and cold forming conditions : HSLA steels 2015, Microalloying 2015 & Offshore engineering steels 2015 Hangzhou, Zheijang Province, China, November 11-13th, 2015 -ISBN: 978-1-119-22330-6. — s. 253–259

Additional information:

None