Module also offered within study programmes:
General information:
Name:
Foundations of Quantum Chemistry
Course of study:
2019/2020
Code:
ZSDA-3-0039-s
Faculty of:
Szkoła Doktorska AGH
Study level:
Third-cycle studies
Specialty:
-
Field of study:
Szkoła Doktorska AGH
Semester:
0
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Course homepage:
 
Responsible teacher:
prof. dr hab. inż. Koleżyński Andrzej (kolezyn@agh.edu.pl)
Dyscypliny:
inżynieria materiałowa, nauki chemiczne, nauki fizyczne
Module summary

The course is intended for undergraduate students and majors interested in gaining basic knowledge about foundations of modern quantum chemistry and its practical applications.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 Student is prepared to effectively select appropriate methods of computational quantum mechanics as an additional tool in solving common problems met in chemistry, physics or materials science SDA3A_K01 Activity during classes
Skills: he can
M_U001 Student can analyze practical problem he/she is facing from the quantum mechanical viewpoint, select the appropriate approach to solve it and analyze the results of ab initio calculations carried out for a particular system. SDA3A_U01 Examination
Knowledge: he knows and understands
M_W001 Student has basic knowledge of fundamentals of quantum mechanics and its most important approximations. SDA3A_W01 Examination
M_W002 Student knows modern methods and tools of quantum mechanics. SDA3A_W02 Examination
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 30 0 0 0 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 Student is prepared to effectively select appropriate methods of computational quantum mechanics as an additional tool in solving common problems met in chemistry, physics or materials science + - - - - - - - - - -
Skills
M_U001 Student can analyze practical problem he/she is facing from the quantum mechanical viewpoint, select the appropriate approach to solve it and analyze the results of ab initio calculations carried out for a particular system. + - - - - - - - - - -
Knowledge
M_W001 Student has basic knowledge of fundamentals of quantum mechanics and its most important approximations. + - - - - - - - - - -
M_W002 Student knows modern methods and tools of quantum mechanics. + - - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 87 h
Module ECTS credits 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 h
Realization of independently performed tasks 50 h
Examination or Final test 2 h
Contact hours 5 h
Module content
Lectures (30h):

Topics covered in this course:
1) Wave mechanics, wave-particle duality, Heisenberg’s uncertainty principle.
2) Hilbert space, operators, Dirac’s notation, Fourier transform.
3) Hermitian Operators, eigenfunctions, eigenvalues, eigenvalue problem.
4) Quantum non-locality, quantum contextuality, quantum entanglement,
5) Bell pairs, rotational invariance of Bell pairs, Bell inequalities.
6) Average values, Ehrenfest’s theorem.
7) Particle in a box, particles in “square” potentials.
8) Time evolution of wave functions and wave packets, the harmonic oscillator.
9) Postulates of quantum mechanics.
10) Schrodinger representation of QM.
11) The Hydrogen atom, hydrogen-like ions, multi-electron atoms, the Pauli principle, electron spin, electronic configuration
12) Born-Oppenheimer approximation, Hartree Fock/SCF method, basis sets (Gaussian, Slater, APW, etc.)
13) Post Hartree-Fock methods: Møller-Plesset perturbation theory, Configuration Interaction, Coupled Clusters, Quantum Monte Carlo
14) Density Functional Theory – Hohenberg-Kohn theorems, Kohn-Sham equations, exchange-correlation potential approximations
15) Practical applications of quantum mechanics to molecules, clusters, and solids (periodic and amorphous)

Additional information
Teaching methods and techniques:
  • Lectures: Lectures in a form of multimedia presentation and animations
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

At least 80% attendance rate is required in order to be allowed to take the final exam.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: Yes
    – Participation rules in classes: Lecture attendance is obligatory.
Method of calculating the final grade:

The final grade is calculated as a weighted average of partial grades: activity during lectures (20%), attendance (10%) and exam results (70%).

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

This will be discussed at the beginning of the first class.

Prerequisites and additional requirements:

The course is intended for undergraduate students and majors interested in gaining basic knowledge about foundations of modern quantum chemistry and its practical applications for molecular and (to some extent) periodic systems.

Recommended literature and teaching resources:

1. C. Kittel, Introduction to Solid State Physics, 8th Edition (2004)
2. S. Altmann, Band Theory of Solids: An Introduction from the Point of View of Symmetry, Oxford University Press (1994).
3. S.R. Elliot, The physics and chemistry of solids, Wiley (1998).
4. M. Springborg, Methods of Electronic-Structure Calculations: From Molecules to Solids, Wiley (2000).
5. P. A, Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press (1987).
6. V. V. Nemoshkalenko, V. N. Antonov, Computational methods in solid state physics, CRC Press (1999).
7. D. S. Sholl, J. Steckel, Density Functional Theory: a practical introduction, John Wiley & Sons, Inc. (2009).
8. R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley-VCH (2005).

Scientific publications of module course instructors related to the topic of the module:

1. A. Koleżyński, “FP-LAPW study of anhydrous cadmium and silver oxalates: electronic structure and electron density topology”, Phys. B, 405 3650–3657 (2010); DOI: 10.1016/j.physb.2010.05.059.
2. J. Leszczyński, A. Koleżyński, K.T. Wojciechowski, “Electronic and transport properties of polycrystalline Ba8Ga15Ge31 type I clathrate prepared by SPS method”, J. Sol. State Chem., 193 114-121 (2012); DOI: 10.1016/j.jssc.2012.03.067.
3. W. Szczypka, P. Jeleń, A. Koleżyński, “Theoretical studies of bonding properties and vibrational spectra of chosen ladder-like silsesquioxane clusters”, J. Mol. Struct., 1075 599–604 (2014), DOI: 10.1016/j.molstruc.2014.05.037.
4. A. Koleżyński, P. Nieroda, K. T. Wojciechowski, “Li doped Mg2Si p-type thermoelectric material: theoretical and experimental study”, Comp. Mat. Sci., 100 84–88 (2015), DOI: 10.1016/j.commatsci.2014.11.015.
5. A. Mikuła, M. Król, A. Koleżyński, “The influence of the long-range order on the vibrational spectra of structures based on sodalite cage”, Spectrochim. Acta. A, 144 273–280 (2015), DOI: 10.1016/j.saa.2015.02.073.
6. P. Nieroda, A. Kolezynski, M. Oszajca, J. Milczarek, K. T. Wojciechowski, “Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2-xLixSi”, J. Electronic Mat., 45 3418-3426 (2016), DOI: 10.1007/s11664-016-4486-5.
7. A. Koleżyński, W. Szczypka, “First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X: Li, Na, Mg, Ca) Carbon Clathrates”, J. Electronic Mat., 45 1336–1345 (2016), DOI: 10.1007/s11664-015-4028-6.
8. A. Koleżyński, W. Szczypka, “Towards band gap engineering in skutterudites: The role of X4 rings geometry in CoSb3-RhSb3 system”, J. Alloys Compd., 691 299-307 (2017), DOI: 10.1016/j.jallcom.2016.08.235
9. E. Drożdż, A. Koleżyński, “The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3 – experimental and theoretical studies”, RSC Advances, 7 28898-28908 (2017), DOI: 10.1039/C7RA04205A.
10. J. Leszczyński, W. Szczypka, Ch. Candolfi, A. Dauscher, B. Lenoir, A. Koleżyński, “HPHT synthesis of highly doped InxCo4Sb12 – experimental and theoretical study”, J. Alloys Compd., DOI: 10.1016/j.jallcom.2017.08.194.

Additional information:

During lectures, the foundations of quantum mechanics and particular techniques, approximations and applications to question of chemical interest will be covered. In this course, you will learn the basics of how to describe the electronic structure of atoms and molecules and calculate their properties using quantum chemistry methods.