Module also offered within study programmes:
General information:
Name:
Reservoir simulation and optimisation
Course of study:
2019/2020
Code:
ZSDA-3-0295-s
Faculty of:
Szkoła Doktorska AGH
Study level:
Third-cycle studies
Specialty:
-
Field of study:
Szkoła Doktorska AGH
Semester:
0
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Course homepage:
 
Responsible teacher:
prof. dr hab. inż. Stopa Jerzy (stopa@agh.edu.pl)
Dyscypliny:
Moduł multidyscyplinarny
Module summary

1. Theoretical backgrounds
2. Mathematical models
3. Black oil type models and compositional
3. Numerical models
4. Reservoir simulators
5. Optimisation and optimal control

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence: is able to
M_K001 group working and technical discussions SDA3A_K01 Activity during classes
Skills: he can
M_U001 Building the simulation models of oil, gas or water reservoirs SDA3A_U01 Project
Knowledge: he knows and understands
M_W001 Theoretical backgrounds and paractical aspects of the reservoir simulations SDA3A_W01
M_W002 Extended knowledge of modern methods for reservoir optimisation SDA3A_W02 Test results
Number of hours for each form of classes:
Sum (hours)
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
45 15 15 0 15 0 0 0 0 0 0 0
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Social competence
M_K001 group working and technical discussions - - - - - - - - - - -
Skills
M_U001 Building the simulation models of oil, gas or water reservoirs - + - + - - - - - - -
Knowledge
M_W001 Theoretical backgrounds and paractical aspects of the reservoir simulations + + - - - - - - - - -
M_W002 Extended knowledge of modern methods for reservoir optimisation - - - - - - - - - - -
Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 84 h
Module ECTS credits 4 ECTS
Udział w zajęciach dydaktycznych/praktyka 45 h
Preparation for classes 10 h
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 5 h
Realization of independently performed tasks 20 h
Examination or Final test 2 h
Contact hours 2 h
Module content
Lectures (15h):

1. Theoretical backgrounds
2. Mathematical models
3. Black oil type models and compositional
3. Numerical models
4. Reservoir simulators
5. Optimisation and optimal control

Auditorium classes (15h):

work with specialized programming language dedicated to reservoir simulation software packages: defining models and controls

Project classes (15h):

Working in specialized computer laboratory with specialized software packages, building static and dynamic models, optimization of the controls and well locations, results visualisation, analysis of the results

Additional information
Teaching methods and techniques:
  • Lectures: 1. Multimedial presentations 2. Discussions 3. Practical examples
  • Auditorium classes: Interactive work, preparation and running models for various possible examples, discussions of the link between theoretical models and real physical phenomena in underground reservoirs of oil, gas and water.
  • Project classes: Interactive work with specialized software packages: building static and dynamic models, optimization of the controls and well locations, results visualisation and discussions.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Final test is required for the lecture. At least 80% attendance rate is required in project and auditorium classes. The realization of all projects is required for a positive final grade. In the absence of positive grade in the basic date, student is entitled to two additional deadlines for the pass mark.

Participation rules in classes:
  • Lectures:
    – Attendance is mandatory: Yes
    – Participation rules in classes: The lecture attendance is not obligatory
  • Auditorium classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: The attendance is obligatory
  • Project classes:
    – Attendance is mandatory: Yes
    – Participation rules in classes: The attendance is obligatory
Method of calculating the final grade:

50% test + 50% projects

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

If the student does not pass any form of classes at the required date, he/she is entitled to write a retake in a form agreed with the lecturer. If someone omits the test, then have to write it on the date agreed with the lecturer.

Prerequisites and additional requirements:

This course is for postgraduate students. Basics of geology, reservoir engineering and mathematics required to participate.

Recommended literature and teaching resources:

1. J. Fanchi, Principles of applied reservoir simulation, Elsevier, 2001
2. ECLIPSE Reference Manual, Schlumberger 2019.
3. ECLIPSE Technical Description, Schlumberger 2019

Scientific publications of module course instructors related to the topic of the module:

1. Computer modeling of coal bed methane recovery in coal mines / Jerzy STOPA, Stanisław NAWRAT // Journal of Energy Resources Technology ; ISSN 0195-0738. — 2012 vol. 134 iss. 3,s. 032804-1–032804-11
2. Influence of fracture-matrix interaction on thermal front movement in fractured reservoir /J. SIEMEK, J. STOPA // Bulletin of the Polish Academy of Sciences. Technical Sciences ; ISSN 0239-7528. — 2015 vol. 63 no. 4, s. 965–969. — Bibliogr. s. 969, Abstr.
3. Determination of minimum miscibility pressure for CO2 and oil system using acoustically monitored separator / Robert CZARNOTA, Damian JANIGA, Jerzy STOPA, Paweł WOJNAROWSKI // Journal of CO2 utilization ; ISSN 2212-9820. — 2017 vol. 17, s. 32–36
4. Performance of nature inspired optimization algorithms for polymer Enhanced Oil Recovery process / Damian JANIGA, Robert CZARNOTA, Jerzy STOPA, Paweł WOJNAROWSKI, Piotr KOSOWSKI // journal of Petroleum Science & Engineering; ISSN 0920-4105. — 2017 vol. 154, s. 354–366
5. Empirical modeling of two-phase CBM production using analogy to nature / Jerzy STOPA, Edyta MIKOŁAJCZAK // Journal of Petroleum Science & Engineering : an international journal devoted to integrated reservoir studies ; ISSN 0920-4105. — 2018 vol. 171, s. 1487–1495
6. Huff and puff process optimization in micro scale by coupling laboratory experiment and numerical simulation / Damian JANIGA, Robert CZARNOTA, Jerzy STOPA, Paweł WOJNAROWSKI // Fuel : the science and technology of fuel and energy ; ISSN 0016-2361. —2018 vol. 224, s. 289–301.
7. Model of two-phase production from gas wells conning water inspired by natural processes / Edyta KUK, Jerzy STOPA // Journal of Natural Gas Science and Engineering ; ISSN 1875-5100. — 2019 vol. 66, s. 96–106
8. Self-adapt reservoir clusterization method to enhance robustness of well placement optimization/ Damian JANIGA, Robert CZARNOTA, Jerzy STOPA, Paweł WOJNAROWSKI // Journal of Petroleum Science & Engineering; ISSN 0920-4105. — 2019 vol. 173, s. 37–52. — Bibliogr. s. 51–52,

Additional information:

None