Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Przetwarzanie danych w pakiecie Matlab
Tok studiów:
2019/2020
Kod:
ZIIE-1-211-n
Wydział:
Zarządzania
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Informatyka i Ekonometria
Semestr:
2
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Polski
Forma studiów:
Niestacjonarne
Strona www:
 
Prowadzący moduł:
dr Skalna Iwona (skalna@agh.edu.pl)
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

Celem zajęć jest zapoznanie studentów z pakietem obliczeniowym Matlab – jego możliwościami, funkcjami i zastosowaniami w problemach nauki i techniki.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Student zna zasady tworzenia kodu w MATLABie, struktury danych, a także funkcje i metody związane z tworzeniem interfejsu użytkownika oraz pozyskiwaniem danych z zewnętrznych źródeł IIE1A_W04, IIE1A_W05 Aktywność na zajęciach,
Odpowiedź ustna,
Udział w dyskusji
M_W002 Student zna dostępne w pakiecie Matlab narzędzia pozwalające na analizę danych doświadczalnych i przedstawienie uzyskanych wyników w przystępnej postaci IIE1A_W04, IIE1A_W06, IIE1A_W05 Aktywność na zajęciach,
Odpowiedź ustna,
Udział w dyskusji
Umiejętności: potrafi
M_U001 Student umie użyć funkcji i metod Matlaba dla celów rozwiązywania problemów technicznych. IIE1A_U04, IIE1A_U03 Aktywność na zajęciach,
Kolokwium,
Odpowiedź ustna,
Udział w dyskusji,
Wykonanie projektu
M_U002 Student potrafi - korzystając z ogólnodostępnych źródeł - wybrać odpowiednie narzędzie analizy danych (z dostępnych w pakiecie Matlab) oraz podsumować wyniki swojej pracy w czytelnej i zwięzłej formie IIE1A_U05, IIE1A_U06, IIE1A_U03 Aktywność na zajęciach,
Kolokwium,
Odpowiedź ustna,
Udział w dyskusji,
Wykonanie projektu
Kompetencje społeczne: jest gotów do
M_K001 Student potrafi w sposób odpowiedzialny planować i realizować prace w zespole wymagające działań o charakterze twórczym IIE1A_K04, IIE1A_K03 Aktywność na zajęciach,
Odpowiedź ustna,
Udział w dyskusji,
Wykonanie projektu
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
16 8 0 0 8 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Student zna zasady tworzenia kodu w MATLABie, struktury danych, a także funkcje i metody związane z tworzeniem interfejsu użytkownika oraz pozyskiwaniem danych z zewnętrznych źródeł + - - - - - - - - - -
M_W002 Student zna dostępne w pakiecie Matlab narzędzia pozwalające na analizę danych doświadczalnych i przedstawienie uzyskanych wyników w przystępnej postaci + - - - - - - - - - -
Umiejętności
M_U001 Student umie użyć funkcji i metod Matlaba dla celów rozwiązywania problemów technicznych. - - - + - - - - - - -
M_U002 Student potrafi - korzystając z ogólnodostępnych źródeł - wybrać odpowiednie narzędzie analizy danych (z dostępnych w pakiecie Matlab) oraz podsumować wyniki swojej pracy w czytelnej i zwięzłej formie - - - + - - - - - - -
Kompetencje społeczne
M_K001 Student potrafi w sposób odpowiedzialny planować i realizować prace w zespole wymagające działań o charakterze twórczym - - - + - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 88 godz
Punkty ECTS za moduł 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 16 godz
Przygotowanie do zajęć 14 godz
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 30 godz
Samodzielne studiowanie tematyki zajęć 26 godz
Egzamin lub kolokwium zaliczeniowe 2 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (8h):

  1. Środowisko pakietu Matlab – wprowadzenie.
  2. Struktury danych i podstawowe operacje.
  3. Język programowania pakietu Matlab. Wstęp do metod tworzenia i wykonywania kodu.
  4. Praca w konsoli, makra/procedury/funkcje użytkownika. Funkcje wbudowane.
  5. Wizualizacja danych – wykresy i animacje.
  6. Pozyskiwanie danych z zewnętrznych źródeł (urządzenia zewnętrzne, bazy danych itp.). # Preprocessing danych
  7. Matlab w praktycznych zastosowaniach.

Ćwiczenia projektowe (8h):

Zgodnie z regulaminem studiów AGH (§ 11, p. 1, ust. 4) główny nacisk tych zajęć
położony jest przygotowanie przez studentów projektu w języku Matlab. Dodatkowo zajęcia poświęcone są na opanowanie umiejętności z zakresu tworzenia algorytmów oraz ich kodowania w języku Matlab.

W szczególności celem ćwiczeń projektowych jest stworzenie projektu ilustrującego treść wykładu i pozwalającego na opanowanie umiejętności związanych z obsługą i praktycznym wykorzystaniem pakietu Matlab. Projekt realizowany jest w formie zespołowej.

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Ćwiczenia projektowe: Studenci wykonują zadany projekt samodzielnie, bez większej ingerencji prowadzącego. Ma to wykształcić poczucie odpowiedzialności za pracę w grupie oraz odpowiedzialności za podejmowane decyzje.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Ocena z ćwiczeń projektowych jest ustalana na podstawie wyników z jednego kolokwium zaliczeniowego, oceny projektu zaliczeniowego oraz aktywności na zajęciach. Do zaliczenia przedmiotu konieczne jest otrzymanie co najmniej dostatecznej oceny (3,0) z ćwiczeń projektowych.
Zaliczenie poprawkowe w przypadku negatywnej oceny kolokwium polega na ponownym zdawaniu określonego materiału w trakcie godzin kontaktowych (maksymalnie dwie próby).
Usprawiedliwiona nieobecność na zajęciach nie zwalnia z konieczności zaliczenia kolokwiów.

W przypadku nieuzyskania zaliczenia w terminie I, student otrzymuje do wykonania dodatkowe zadania (obejmujący cały materiał), który będzie oceniany w skali 0-50 pkt. Ocena z zaliczenia będzie wystawiana na podstawie liczby uzyskanych punktów (wg Regulaminu Studiów AGH).

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Nie
    – Zasady udziału w zajęciach: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Ćwiczenia projektowe:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci wykonują prace praktyczne mające na celu uzyskanie kompetencji zakładanych przez syllabus. Ocenie podlega sposób wykonania projektu oraz efekt końcowy.
Sposób obliczania oceny końcowej:

Ocena końcowa wystawiana jest przez prowadzącego wykład na podstawie oceny z ćwiczeń projektowych. Ocenę zaokrągla się zależnie od obecności na wykładach, z możliwością podniesienia (maks. o 1.0) na podstawie dodatkowego kolokwium ustnego.

Podczas zajęć wystawiane są oceny cząstkowe:

  • S1: ocena ze sprawdzianu dotyczącego praktycznych umiejętności programowania w języku Matlab.
  • PW: ocena z wykonania projektu.
  • A: ocena z aktywności na zajęciach

Ocena końcowa (OCP) wystawiona jest wg formuły:
OCP = 0,55*S2 + 0,35*PW + 0,1*A

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Wyrównanie zaległości powstałych wskutek nieobecności studenta na nie więcej niż dwóch zajęciach wymaga od studenta samodzielnego (z możliwością wykorzystania godzin konsultacji) opanowania przerabianego na tych zajęciach materiału.

Nieusprawiedliwiona nieobecność na więcej niż dwóch zajęciach oznacza brak możliwości zaliczenia ćwiczeń projektowych.

Usprawiedliwienie nieobecności na zajęciach może nastąpić tylko na podstawie zwolnienia lekarskiego lub pisma urzędowego (np. wezwania do sądu).

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Znajomość podstaw informatyki i zasad korzystania z komputera. Znajomość matematyki na poziomie szkoły średniej.

Zalecana literatura i pomoce naukowe:
  1. P. Rudra, “MATLAB 7 dla naukowców i inżynierów”, Wydawnictwo Naukowe PWN, 2010.
  2. B. Mrozek, Zbigniew Mrozek, “MATLAB i Simulink. Poradnik użytkownika. Wydanie III”, Wydawnictwo Helion, 2010.
  3. S. Attaway, “Matlab, Third Edition: A Practical Introduction to Programming and Problem Solving”, Butterworth-Heinemann, 2013.
  4. Strona internetowa http://www.mathworks.com/ (w szczególności sekcja Code Exchange).
  5. A. Zalewski, R. Cegieła, Matlab – obliczenia numeryczne i ich zastosowania,
    Wydawnictwo Naukowe PWN, Warszawa 2001.
  6. B. Mrozek, Z. Mrozek, Matlab uniwersalne środowisko do obliczeń naukowo-technicznych, Wyd. PLJ,
    Warszawa 1996.
  7. W. Regel: Wykresy i obiekty graficzne w MATLAB. Wyd.MIKOM 2003
Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Wąchol J., Stach-Janas I. : Zastosowanie metod badań operacyjnych do rozwiązywania problemów związanych z migracją ludności poszukującej pracy III Międzynarodowe Sympozjum Naukowe Studentów i Młodych Politechnika Lubelska 1995, s. 23-28,

Informacje dodatkowe:

Wszystkie efekty kształcenia podane w sylabusie przedmiotu podlegają weryfikacji i ocenie na zajęciach projektowych na podstawie przedstawionych rozwiązań zadań.