Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Advanced statistics
Tok studiów:
2019/2020
Kod:
GIGR-2-108-ME-s
Wydział:
Górnictwa i Geoinżynierii
Poziom studiów:
Studia II stopnia
Specjalność:
Mining Engineering
Kierunek:
Inżynieria Górnicza
Semestr:
1
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Strona www:
 
Prowadzący moduł:
dr hab. inż, prof. AGH Niedoba Tomasz (tniedoba@agh.edu.pl)
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

Statistical methods in data analysis. Fitting of distribution to empirical data. Evaluation of statistical model quality. Determination of estimated research result. Estimation of statistical error. Estimators of distribution parameters. Verification of parametrical and non-parametrical statistical hypotheses.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Has knowledge about random variables and their distributions IGR2A_W03, IGR2A_W01 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_W002 Has knowledge about basics of probability theory IGR2A_W03, IGR2A_W01 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_W003 Knows what is it a point and interval analysis and how to interprete it IGR2A_W03, IGR2A_W01 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_W004 Has knowledge of statistical hypotheses and their verification IGR2A_W03, IGR2A_W01 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
Umiejętności: potrafi
M_U001 Is able to plan a statistical research IGR2A_U04, IGR2A_U05, IGR2A_U01, IGR2A_U06 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_U002 Is able to properly choose an adequate statistical test and conduct the process of verification of statistical hypotheses IGR2A_U04, IGR2A_U05, IGR2A_U01, IGR2A_U06 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_U003 Is able to do simple statistical models for two and more random variables IGR2A_U04, IGR2A_U05, IGR2A_U01, IGR2A_U06 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_U004 Can use the least squared method without problems IGR2A_U04, IGR2A_U05, IGR2A_U01, IGR2A_U06 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
Kompetencje społeczne: jest gotów do
M_K001 Gets experience in working in group IGR2A_K01, IGR2A_K03, IGR2A_K04, IGR2A_K02 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
M_K002 Understands that proper data transfer is necessary in scientific and research activities IGR2A_K01, IGR2A_K03, IGR2A_K04, IGR2A_K02 Aktywność na zajęciach,
Kolokwium,
Wykonanie ćwiczeń
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 15 15 0 0 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Has knowledge about random variables and their distributions + + - - - - - - - - -
M_W002 Has knowledge about basics of probability theory + + - - - - - - - - -
M_W003 Knows what is it a point and interval analysis and how to interprete it + + - - - - - - - - -
M_W004 Has knowledge of statistical hypotheses and their verification + + - - - - - - - - -
Umiejętności
M_U001 Is able to plan a statistical research + + - - - - - - - - -
M_U002 Is able to properly choose an adequate statistical test and conduct the process of verification of statistical hypotheses + + - - - - - - - - -
M_U003 Is able to do simple statistical models for two and more random variables + + - - - - - - - - -
M_U004 Can use the least squared method without problems + + - - - - - - - - -
Kompetencje społeczne
M_K001 Gets experience in working in group + + - - - - - - - - -
M_K002 Understands that proper data transfer is necessary in scientific and research activities + + - - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 56 godz
Punkty ECTS za moduł 2 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 godz
Przygotowanie do zajęć 15 godz
Samodzielne studiowanie tematyki zajęć 10 godz
Dodatkowe godziny kontaktowe 1 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (15h):

Probability, definitions, basic theorems, conditional probability, Bayes theorem. Random variables and their distributions: Bernoulli’s distribution, Poisson distribution, even distribution, normal distribution, RRB distribution etc., definitions of population, sample, basics of results elaboration: histograms, sample moments, basic theorems of statistics distributions. Confidence intervals for mean value, variance and percent, equations for sample quantity, rules of sampling. Statistical tests – parametric for mean value, variance; non-parametric – independence and compatibility tests. Analysis of correlation and regression. Elements of experimental theory.

Ćwiczenia audytoryjne (15h):

Applications of probability theory (definitions of probability, basic theorems, conditional probability, Bayes theorem). Random variables distributions: Bernoulli’s distribution, Poisson distribution, even distribution, normal distribution, RRB distribution and other applications in mining. Rules of sampling, basics of results elaboration, estimators and graphs. Confidence intervals for various parameters, equations for sample quantity on mining examples. Statistical tests – parametric for mean value and variance; non-parametric – independence tests, serial tests and compatibility tests on mining examples. Analysis of correlation and regression. Factor planning. Application of STATISTICA PL computer program in data analysis.

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: The content presented at the lectures is provided in the form of a multimedia presentation in combination with a classical lecture panel enriched with demonstrations relating to the issues presented.
  • Ćwiczenia audytoryjne: During the auditorium classes students solve the problems they have previously been asked on the board. The lecturer systematically applies the explanations and moderates the discussion with the group of the given problem.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Two tests to pass during semester.
Retakes possible individually during consultations.

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Nie
    – Zasady udziału w zajęciach: Students participate in classes learning further content of teaching according to the syllabus of the subject. Students should constantly ask questions and explain doubts. Audiovisual recording of the lectures is not allowed and requires the teacher's consent.
  • Ćwiczenia audytoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Students joining the classes are required to prepare themselves in the scope indicated each time by the teacher (eg in the form of task sets). Student's work assessment can be based on oral or written statements in the form of a colloquium, which, according to the AGH study regulations, translates into a final grade, in this form of classes.
Sposób obliczania oceny końcowej:

The final grade is equal to final test’s mark.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Individual work in accordance to tutor’s instructions.

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Mathematics – 1st level of studies.

Zalecana literatura i pomoce naukowe:

1. J. Greń: Statystyka matematyczna. Modele i zadania, PWN, Warszawa, 1984.
2. W. Krysicki: Rachunek prawdopodobieństwa i statystyka matematyczna, t. I i II, PWN, Warszawa, 2007.
3. W. Klonecki: Statystyka dla inżynierów, PWN, Warszawa, 1999.
4. J. Koronacki: Statystyka dla kierunków technicznych i przyrodniczych, WN-T, Warszawa, 2006.
5. M. Sobczyk: Statystyka opisowa, Wydawnictwo CH Beck, Warszawa, 2010.
6. A. Plucińska, E. Pluciński: Probabilistyka, WN-T, Warszawa, 2000.
7. W. Navidi: Statisics for engineers and scientists, McGraw Hill, 2014.
8. R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye: Probability and Statistics for Engineers and Scientists, Pearson Education, 2012.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. Jamróz D., Niedoba T.: Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types, Archives of Mining Sciences, vol. 60(1), pp. 39-50, 2015.
2. Niedoba T.: Application of relevance maps in multidimensional classification of coal types, Archives of Mining Sciences, vol. 60(1), pp. 93-106, 2015.
3. Jamróz D., Niedoba T.: Comparison of selected methods of multi-parameter data visualization used for classification of coals, Physicochemical Problems of Mineral Processing, vol. 51(2), pp. 769-784, 2015.
4. Niedoba T.: Elementy metodologii stosowania dwu- i wielowymiarowych rozkładów właściwości materiałów uziarnionych do opisu wzbogacania węgli, Gospodarka Surowcami Mineralnymi, vol. 29(2), pp. 155-172, 2013.
5. Niedoba T.: Statistical analysis of the relationship between particle size and particle density of raw coal, Physicochemical Problems of Mineral Processing, vol. 49(1), pp. 175-188, 2013.
6. Niedoba T.: Wielowymiarowe charakterystyki zmiennych losowych w opisie materiałów uziarnionych i procesów ich rozdziału, Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, seria: Studia, Rozprawy, Monografie, 2013.

Informacje dodatkowe:

No data