Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
MEMS fabrication systems
Tok studiów:
2019/2020
Kod:
RIME-2-208-PM-s
Wydział:
Inżynierii Mechanicznej i Robotyki
Poziom studiów:
Studia II stopnia
Specjalność:
Projektowanie mechatroniczne
Kierunek:
Inżynieria Mechatroniczna
Semestr:
2
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Strona www:
 
Prowadzący moduł:
dr inż. Mańka Michał (mmanka@agh.edu.pl)
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

Introduction into topics connected with MEMS and NEMS fabrication methods, including techniques and environment requirements of the Micro- and Nano- fabrication.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Basic knowledge of phenomena related to the change of scale from macro and meso to micro and nano and their impact on phenomena occurring in micro and nano systems IME2A_W01 Wynik testu zaliczeniowego
M_W002 Knowledge of the requirements for the environment in which MEMS and NEMS systems can be produced and can determine the requirements for a specific process IME2A_W07 Wynik testu zaliczeniowego
M_W003 Knowledge of the methods and techniques of layer deposition and etching for materials in the process of manufacturing MEMS systems, is able to choose the proper method and process parameters for selected materials IME2A_W01, IME2A_W07 Zaliczenie laboratorium,
Wynik testu zaliczeniowego
M_W004 Knowledge of the photo-lithographic methods and techniques, materials and devices used in the photolithography process IME2A_W01, IME2A_W07 Wynik testu zaliczeniowego
Umiejętności: potrafi
M_U001 Is able to design and conduct simulations of selected MEMS systems IME2A_U07 Wykonanie ćwiczeń laboratoryjnych
M_U002 Is able to use selected CAE tools in the process of designing MEMS systems and with their use, perform simulation verification of the developed project IME2A_U07 Wykonanie ćwiczeń laboratoryjnych
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
42 14 0 28 0 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Basic knowledge of phenomena related to the change of scale from macro and meso to micro and nano and their impact on phenomena occurring in micro and nano systems + - - - - - - - - - -
M_W002 Knowledge of the requirements for the environment in which MEMS and NEMS systems can be produced and can determine the requirements for a specific process + - - - - - - - - - -
M_W003 Knowledge of the methods and techniques of layer deposition and etching for materials in the process of manufacturing MEMS systems, is able to choose the proper method and process parameters for selected materials + - + - - - - - - - -
M_W004 Knowledge of the photo-lithographic methods and techniques, materials and devices used in the photolithography process + - + - - - - - - - -
Umiejętności
M_U001 Is able to design and conduct simulations of selected MEMS systems - - + - - - - - - - -
M_U002 Is able to use selected CAE tools in the process of designing MEMS systems and with their use, perform simulation verification of the developed project - - + - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 78 godz
Punkty ECTS za moduł 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 42 godz
Przygotowanie do zajęć 10 godz
Samodzielne studiowanie tematyki zajęć 25 godz
Egzamin lub kolokwium zaliczeniowe 1 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (14h):
  1. Influence of scale of the objects on MEMS and their fabrication

    Influence of selected physical phenomena on micro mechanisms fabrication processes .
    Properties of materials in MEMS and NEMS systems

  2. Nanomaterials in MEMS/NEMS systems and in Macro Scale systems

    Structure and types of Nanomaterials in MEMS/NEMS
    Sensor characteristics of Nanomaterials
    Fabrication and deposition of nanomaterials
    Identification methods of nanomaterials
    Nanomaterials modelling methods

  3. Enviromental requirements of MEMS manufacturing process

    Environmental requirements of the MEMS manufacturing.
    Clean-room technology.
    Process environmental requirements.

  4. Layer deposition methods in MEMS manufacturing

    Bulk micro-machining.
    Surface micro-machining.
    Methods of materials’ deposition.
    Mono-crystals manufacturing.
    Metal layer deposition. Sputtering
    Enhanced methods of material deposition.

  5. Material removal methods in MEMS manufacturing

    Isotropic vs anisotropic etching.
    Wet etching methods.
    Dry etching methods.
    Chemical etching.
    Physical etching.

  6. Lithography process in MEMS manufacturing

    Masked lithography.
    Photoresist deposition.
    Developing of the photoresist.
    Maskless lithography.
    High profile structures.

Ćwiczenia laboratoryjne (28h):
  1. Getting started with MEMS CAD/CAE tools – multiphysics and multiscale approach.

    Introduction to virtual prototyping of microstructures including multi-domain and multi-scale approach with the focus on the fablication process.
    Familiarization with the design environment and simulation of microsystems properties. Familiarizing with the process of creating a FEM analysis in the design environment; defining: geometry, finite element grids, material properties, boundary conditions. Execution of exemplary structural static and dynamic analyzes.

  2. 3-D geometric and FEM models building for MEMS.

    Construction of three-dimensional geometric models and finite elements of microsystems.
    Basic materials used in the production of microchips.
    Discussing important material and fabircation process parameters.

  3. Static and dynamic FEA for models of MEMS systems applying multiphysics approach.

    Discussion of contact issues in numerical analyzes.
    Execution of exemplary structural analysis including contact between bodies.
    Simulation study of static and dynamic properties of microsystems using a multi-domain approach with focus on the technological process influences.
    Presenting of the analysis results.
    Analysis of the correctness of the results obtained.
    Analysis of the material properties influence on the obtained results.
    Uncertainty analysis

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Ćwiczenia laboratoryjne: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Laboratory exercises:
- Obtaining at least 51% of points from laboratory.
- Preparation and passing all required models

Final evaluation:
- Obtaining at least 51% of points from test.
- Obtaining positive grade from laboratory classes

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Ćwiczenia laboratoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu.
Sposób obliczania oceny końcowej:

Weighted average of the laboratories (60%) and test (40%).Both elements must be positive.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Implementation of tasks performed during classes on which the student was absent.
Preparation of the elaboration of the subject issued by the teacher

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Nie podano wymagań wstępnych lub dodatkowych.

Zalecana literatura i pomoce naukowe:

Gad-el-Hak I.:The MEMS Handbook,CRC Press,2001

Bhushan: Handbook of Nanotechnology, Springer, 2003

Gianchandani, Y.B, Tabata O., Zappe H, Comprehensive Microsystems,Elsevier, 2007

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Martowicz A., Uhl T.: Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties. Mechanical Systems and Signal Processing, Vol. 32, 2012, pp. 44-58.

Martowicz A., Stanciu I., Uhl T.: Uncertainty analysis for dynamic properties of MEMS resonator supported by fuzzy arithmetics. The International Journal of Multiphysics, Vol. 3, No. 3, 2009, pp. 201-219.

Martowicz A., Stanciu I., Uhl T.: Uncertainty analysis for dynamic properties of MEMS resonator supported by fuzzy arithmetics. The International Journal of Multiphysics, Vol. 3, No. 3, 2009, pp. 201-219.

Martowicz A., Klepka A., Uhl T.: Application of Response Surface Method to model static and dynamic properties of MEMS structure. Proceedings of the Conference Multiphysics 2009, Lille, France, 9-11 December 2009, abstr. p. 31.

Martowicz A., Klepka A., Uhl T.: Modelowanie własności mikrolustra z zastosowaniem metody powierzchni odpowiedzi (eng.: Modeling of the properties of micromirror with the application of response surface method). In: II Krajowa Konferencja Nano- i Mikromechaniki, Komitet Mechaniki Polskiej Akademii Nauk, Politechnika Rzeszowska im. Ignacego Łukasiewicza, Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk; Krasiczyn, Poland, 6–8 July 2010, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, Poland, 2010, pp. 59–60.

Martowicz A., Uhl T., Klepka A.: Application of multiphysics approach to study variation of dynamic properties of MEMS structure. In: Sas P., Bergen B. [eds.]: Proceedings of ISMA 2010: International Conference on Noise and Vibration Engineering, including USD 2010, Katholieke Universiteit Leuven; Leuven, Belgium, 20–22 September 2010, pp. 4811–4824 (abstr. p.84).

Martowicz A., Manka M., Uhl T.: Multiphysics approach applied to model properties of capacitive micromachined ultrasonic transducer. Proceedings of the Conference Multiphysics 2010, Kumamoto, Japan, 8-10 December 2010, abstr. p. 28.

Martowicz A., Mańka M., Uhl T.: Multi-criteria design optimization of micromirror considering technological uncertainties. In: Proceedings of the 7th International Conference Mechatronic Systems and Materials MSM 2011, Kaunas, Lithuania, 7–9 July 2011, 13pp. (abstr. In: Skiedraitė I., Baskutienė J., Dragašius E. [eds.]: 7th International Conference Mechatronic Systems and Materials MSM 2011, Technologija; Kaunas, Lithuania, 7–9 July 2011, pp. 12–13).

Martowicz A., Uhl T., Klepka A.: Performance-based design optimization of MEMS device in presence of technological uncertainties. In: De Roeck G. et al. [eds.]: Proceedings of the 8th International Conference on Structural Dynamics EURODYN2011, EASD European Association of Structural Dynamics, Katholieke Universiteit Leuven; Leuven, Belgium, 4–6 July 2011, pp. 2933–2938.

Martowicz A., Mańka M., Rosiek M., Uhl T.: Reliability based robust design optimization of MEMS resonator. In Uhl T. [ed.]: Projektowanie mechatroniczne, zagadnienia wybrane. Akademia Górniczo-Hutnicza, Katedra Robotyki i Mechatroniki, Kraków, 2011, pp. 137–146.

Martowicz A., Rosiek M., Mańka M., Uhl T.: Improving the design of capacitive micromachined ultrasonic transducers aided with sensitivity analysis. The International Journal of Multiphysics, Vol. 5, No. 2, 2011, pp. 157–172.

Martowicz A., Klepka A., Uhl T.: Analysis of static and dynamic properties of micromirror with the application of response surface method. The International Journal of Multiphysics, Vol. 6, No. 2, 2012, pp. 115–127.

Martowicz A., Uhl T.: Uncertainty treatment in numerical simulations utilised for design of MEMS devices. In: Sas P., Moens D., Jonckheere S. [eds.]: Proceedings of ISMA 2012 – International Conference on Noise and Vibration Engineering & USD 2012 – International Conference on Uncertainty in Structural Dynamics, Katholieke Universiteit Leuven; Leuven, Belgium, 17–19 September 2012, pp. 4827–4841 (abstr. p. 37).

Codreanu I., Martowicz A., Gallina A., Pieczonka L., Uhl T.: Study of the effect of process induced uncertainties on the performance of a micro-comb resonator. Diffusion and Defect Data – Solid State Data. Part B, Solid State Phenomena, Vols.147-149, 2009, pp. 716-725.

Uhl T., Martowicz A., Codreanu I., Klepka A.: Analysis of uncertainties in MEMS and their influence on dynamic properties. Archives of Mechanics, Vol. 61, No. 5, 2009, pp. 349-370.

Application of carbon nanotubes (CNT) to design of the strain sensor — Zastosowanie nanorurek węglowych do konstrukcji czujnika odkształceń / Krzysztof GRABOWSKI, Tadeusz UHL, Paulina ZBYRAD // Pomiary, Automatyka, Kontrola / Stowarzyszenie Inżynierów i Techników Mechaników Polskich. Sekcja Metrologii, Polskie Stowarzyszenie Pomiarów Automatyki i Robotyki POLSPAR ; ISSN 0032-4140. — 2012 vol. 58 no. 11, s. 984–986

Development of the strain sensors based on CNT/epoxy using screen printing / Krzysztof GRABOWSKI, Paulina ZBYRAD, Tadeusz UHL // Key Engineering Materials ; ISSN 1013-9826. — 2014 vol. 588, s. 84–90. — Bibliogr. s. 90, Abstr.. — 5th international congress on technical diagnostics 2012

RFID sensing platform in structure deformation monitoring / Mateusz LISOWSKI, Przemysław GONEK, Krzysztof GRABOWSKI, Tadeusz UHL, Wiesław STASZEWSKI // W: Structural health monitoring 2015 : system reliability for verification and implementation : proceedings of the tenth international workshop on structural health monitoring : September 1–3, 2015 : [Stanford, USA] / ed. by Fu-Kuo Chang, Fotis Kopsaftopoulos. — [USA : DEStech Publications], 2015. — ISBN: 978-1-60595-275-8. — S. 1030–1037.

Electrical conductivity of nanocomposites based on carbon nanotubes – a 3D multiscale modeling approach / Krzysztof GRABOWSKI, Paulina ZBYRAD, Wiesław J. STASZEWSKI, Tadeusz UHL, Kazimierz WIATR, Paweł PAĆKO // W: Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2016 : Las Vegas, United States, March 20, 2016 / Jerome P. Lynch. — [USA : SPIE], 2016. — (Proceedings of SPIE / The International Society for Optical Engineering ; ISSN 0277-786X ; vol. 9803)

Multiscale electro-mechanical modeling of carbon nanotube composites / Krzysztof GRABOWSKI, Paulina ZBYRAD, Tadeusz UHL, Wiesław J. STASZEWSKI, Paweł PAĆKO // Computational Materials Science ; ISSN 0927-0256. — 2017vol. 135, s. 169–180. — Bibliogr. s. 179–180,

Uncertainty quantification for the properties of a structure made of SMA utilising numerical model / A. MARTOWICZ, J. BRYŁA, T. UHL // W: ISMA2016 & USD2016 conferences [Dokument elektroniczny] : 27th Leuven conference on Noise and vibration engineering & 5th edition of the international conference on Uncertainly in Structural Dynamics USD2016 : Leuven, Belgium, 19–21 September 2016.

Modeling aspects and simulations for properties of shape memory alloys / Jakub BRYŁA, Piotr Palenica, Adam MARTOWICZ // W: Projektowanie mechatroniczne : zagadnienia wybrane : praca zbiorowa / pod red. Michała Mańka. — Kraków : Katedra Robotyki i Mechatroniki. Akademia Górniczo-Hutnicza, 2017

Experimental and numerical assessment of the characteristics describing superelasticity in shape memory alloys – influence of boundary conditions / Jakub BRYŁA, Adam MARTOWICZ // W: CMES [Dokument elektroniczny] : II international Conference of Computational Methods in Engineering Science : Lublin, 23–25 November 2017 : book of abstracts.

Informacje dodatkowe:

Brak