Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Wielowymiarowe Układy Dynamiczne
Tok studiów:
2019/2020
Kod:
AMAT-2-213-MN-s
Wydział:
Matematyki Stosowanej
Poziom studiów:
Studia II stopnia
Specjalność:
Matematyka w naukach technicznych i przyrodniczych
Kierunek:
Matematyka
Semestr:
2
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Polski
Forma studiów:
Stacjonarne
Strona www:
 
Prowadzący moduł:
dr hab. Vladimirov Vsevolod (vladimir@mat.agh.edu.pl)
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

Seminarium częściowo zapewnia studentowi udział w badaniach.
Seminarium jest wybierane zgodnie z zainteresowaniami, rozszerza wiedzę teoretyczną lub zastosowania, zapoznaje z fachową literaturą.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Student zna podstawowe pojęcia dotyczące ciągłych oraz dyskretnych układów dynamicznych MAT2A_W07, MAT2A_W01 Aktywność na zajęciach,
Referat
M_W002 Student zna konstrukcję odwzorowania Poincarego oraz jego zastosowanie do badań układów dynamicznych MAT2A_W05, MAT2A_W01 Aktywność na zajęciach,
Referat
M_W003 Student zna pewne modele geometryczne związane z wielowymiarowymi układami dynamicznymi MAT2A_W01 Aktywność na zajęciach,
Referat
M_W004 Student zna związki podkowy Smale'a z powstaniem rozwiązań chaotycznych w układzie dynamicznym MAT2A_W01 Aktywność na zajęciach,
Referat
M_W005 Student zna podstawowe własności odwzorowania logistycznego MAT2A_W09, MAT2A_W01 Aktywność na zajęciach,
Referat
Kompetencje społeczne: jest gotów do
M_K001 Student posługuje się specjalistyczną literaturą polską i angielską MAT2A_K06, MAT2A_K05 Aktywność na zajęciach,
Referat
M_K002 Rozumie i docenia znaczenie uczciwości intelektualnej w działaniach własnych i innych osób. MAT2A_K04 Aktywność na zajęciach
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 0 0 0 0 0 30 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Student zna podstawowe pojęcia dotyczące ciągłych oraz dyskretnych układów dynamicznych - - - - - + - - - - -
M_W002 Student zna konstrukcję odwzorowania Poincarego oraz jego zastosowanie do badań układów dynamicznych - - - - - + - - - - -
M_W003 Student zna pewne modele geometryczne związane z wielowymiarowymi układami dynamicznymi - - - - - + - - - - -
M_W004 Student zna związki podkowy Smale'a z powstaniem rozwiązań chaotycznych w układzie dynamicznym - - - - - + - - - - -
M_W005 Student zna podstawowe własności odwzorowania logistycznego - - - - - + - - - - -
Kompetencje społeczne
M_K001 Student posługuje się specjalistyczną literaturą polską i angielską - - - - - + - - - - -
M_K002 Rozumie i docenia znaczenie uczciwości intelektualnej w działaniach własnych i innych osób. - - - - - + - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 57 godz
Punkty ECTS za moduł 2 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 godz
Przygotowanie do zajęć 25 godz
Dodatkowe godziny kontaktowe 2 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Zajęcia seminaryjne (30h):

Na seminarium będą dyskutowane pewne cechy wielowymiarowych układów dynamicznych dotyczące pojęcia chaosu deterministycznego. Będą referowane oraz omawiane scenariusze przejść od drgań okresowych do drgań chaotycznych, oraz metody pozwalające zgłębić scenariusze przejść na przykładzie modeli uproszczonych.

Pozostałe informacje
Metody i techniki kształcenia:
  • Zajęcia seminaryjne: Na zajęciach seminaryjnych podstawą jest prezentacja multimedialna oraz ustna prowadzona przez studentów. Kolejnym ważnym elementem kształcenia są odpowiedzi na powstałe pytania, a także dyskusja studentów nad prezentowanymi treściami.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Zasady udziału w zajęciach:
  • Zajęcia seminaryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci prezentują na forum grupy temat wskazany przez prowadzącego oraz uczestniczą w dyskusji nad tym tematem. Ocenie podlega zarówno wartość merytoryczna prezentacji, jak i tzw. kompetencje miękkie.
Sposób obliczania oceny końcowej:

Referat, aktywność na seminarium

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Student powinien zgłosić się do prowadzącego w celu ustalenia indywidualnego sposobu nadrobienia zaległości.

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Kurs “Równania fizyki matematycznej-I” lub “Drgania nieliniowe i chaotyczne”.

Zalecana literatura i pomoce naukowe:

1. Guckenheimer J, Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1986.
2. Arnold W.I., Mathematical methods of classical mechanics, Springer, 1991.
3. Feroe, J., Physica D, vol. bf 62 (1993), 254—262.
4. Schuster, H., Chaos deterministyczny, PWN, Warszawa, 1996.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. Likus, W.; Vladimirov, V.A.
Solitary waves in the model of active media, taking into account effects of relaxation; Rep. Math. Phys. 75, No. 2, 213-230 (2015).

2. Danylenko, V.A.; Danevich, T.B.; Makarenko, O.S.; Moskaliuk, V.S.; Skurativskiy, S.I.; Vladimirov, V.A.
Exact solutions and wave patterns within some non-local hydrodynamic-type models;
Algebras Groups Geom. 31, No. 4, 407-477 (2014).

3. Vladimirov, V.A.; Morgulis, A.B.
Relative equilibria in the Bjerknes problem. (English. Russian original);
Sib. Math. J. 55, No. 1, 35-48 (2014); translation from Sib. Mat. Zh. 55, No. 1, 44-60 (2014).

4. Danylenko, V.A.; Danevich, T.B.; Makarenko, O.S.; Moskaliuk, S.S.jun.; Skurativskiy, S.I.; Vladimirov, V.A.
Group analysis of reaction-diffusion-convection of nonlinear equations;
Algebras Groups Geom. 30, No. 3, 275-365 (2013).

5. Vladimirov, V.A.
Dumbbell micro-robot driven by flow oscillations; J. Fluid Mech. 717, R8, 11 p., electronic only (2013).

6. Vladimirov, V.A.
On the self-propulsion of an N-sphere micro-robot; J. Fluid Mech. 716, R1, 11 p., electronic only (2013).

7. Danylenko, V.A.; Danevich, T.B.; Makarenko, O.S.; Moskaliuk, N.M.; Skurativskiy, S.I.; Vladimirov, V.A.
Algebra-invariant models for nonlinear nonlocal media;
Algebras Groups Geom. 29, No. 3, 309-376 (2012).

8. Vladimirov, V.A.; Ma̧czka, Cz.;
On the stability of kink-like and soliton-like solutions of the generalized convection-reaction-diffusion equation; Rep. Math. Phys. 70, No. 3, 313-329 (2012).

9. Vladimirov, V.A.; Magnetohydrodynamic drift equations: from Langmuir circulations to magnetohydrodynamic dynamo? J. Fluid Mech. 698, 51-61 (2012).

10. Vladimirov, V.A.; Kutafina, E.V.; Zorychta, B.
On the non-local hydrodynamic-type system and its soliton-like solutions;
J. Phys. A, Math. Theor. 45, No. 8, Article ID 085210, 12 p. (2012).

11. Vladimirov, V.A.; Ma̧czka, Cz.
On the stability of some exact solutions to the generalized convection-reaction-diffusion equation; Chaos Solitons Fractals 44, No. 9, 677-684 (2011).

Informacje dodatkowe:

Brak