Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Electronic structure and bonding in solids. Part. II. practical applications
Tok studiów:
2019/2020
Kod:
ZSDA-3-0038-s
Wydział:
Szkoła Doktorska AGH
Poziom studiów:
Studia III stopnia
Specjalność:
-
Kierunek:
Szkoła Doktorska AGH
Semestr:
0
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Strona www:
 
Prowadzący moduł:
prof. dr hab. inż. Koleżyński Andrzej (kolezyn@agh.edu.pl)
Dyscypliny:
inżynieria materiałowa, nauki chemiczne, nauki fizyczne
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

The course is intended for Ph.D. students interested in exploring practical aspects of using theoretical methods of modern physics and chemistry for solving common problems for periodic systems.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Student has basic knowledge of quantum mechanics and the most important approaches to electronic structure calculations in periodic systems. SDA3A_W01
M_W002 Student knows modern methods and tools used in the analysis of bonding properties in solids. SDA3A_W01
Umiejętności: potrafi
M_U001 Student can calculate the electronic structure for 3D periodic systems and surfaces as well as the topological properties of total electron density and use the obtained results in the detailed analysis of structural, electronic and bonding properties of a given system. SDA3A_U01
Kompetencje społeczne: jest gotów do
M_K001 Student is prepared to effectively use chosen methods of computational solid state chemistry and physics as the complementary tool in solving common problems met in physics, chemistry and materials science SDA3A_K01
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
30 0 0 30 0 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Student has basic knowledge of quantum mechanics and the most important approaches to electronic structure calculations in periodic systems. - - + - - - - - - - -
M_W002 Student knows modern methods and tools used in the analysis of bonding properties in solids. - - + - - - - - - - -
Umiejętności
M_U001 Student can calculate the electronic structure for 3D periodic systems and surfaces as well as the topological properties of total electron density and use the obtained results in the detailed analysis of structural, electronic and bonding properties of a given system. - - + - - - - - - - -
Kompetencje społeczne
M_K001 Student is prepared to effectively use chosen methods of computational solid state chemistry and physics as the complementary tool in solving common problems met in physics, chemistry and materials science - - + - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 75 godz
Punkty ECTS za moduł 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 30 godz
Przygotowanie do zajęć 5 godz
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 25 godz
Samodzielne studiowanie tematyki zajęć 10 godz
Dodatkowe godziny kontaktowe 5 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Ćwiczenia laboratoryjne (30h):
Practical calculations

Every student is supposed to carry out complete calculations for a series of model systems by means of WIEN2k and Critic2 programs and to analyze the obtained results in detail.

Pozostałe informacje
Metody i techniki kształcenia:
  • Ćwiczenia laboratoryjne: Interactive work with various software packages: preparation and running calculations for real problems, analysis of the results. During the laboratory classes, students independently solve practical problems, choosing the right tools.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

At least 80% attendance rate is required in laboratory classes. The realization of the final project and partial tasks during classes is required for a positive final grade. In the absence of positive grade in the basic date, student is entitled to two additional deadlines for the pass mark.

Zasady udziału w zajęciach:
  • Ćwiczenia laboratoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Obligatory attendance. Students carry out lab. exercises in accordance with materials provided by the teacher. The student is obliged to prepare for the subject of the exercise, which can be verified in an oral or written test. Completion of classes takes place on the basis of presenting a solution to the problem. Completion of the module is possible after completing all laboratory classes and the final project.
Sposób obliczania oceny końcowej:

The final grade is calculated as the mean of partial grades obtained during laboratory classes and final project evaluation.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

This will be discussed at the beginning of the first class.

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

In order to enroll in this course, the completion of the course ZSDA-3-037-s, “Electronic structure and bonding in solids. Part I. Theoretical introduction.” is required.
Also, basic skills in using Linux system will be an advantage.

Zalecana literatura i pomoce naukowe:

Suggested readings:

1. C. Kittel, Introduction to Solid State Physics, 8th Edition (2004)
2. S. Altmann, Band Theory of Solids: An Introduction from the Point of View of Symmetry, Oxford University Press (1994).
3. S.R. Elliot, The physics and chemistry of solids, Wiley (1998).
4. M. Springborg, Methods of Electronic-Structure Calculations: From Molecules to Solids, Wiley (2000).
5. P. A, Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press (1987).
6. V. V. Nemoshkalenko, V. N. Antonov, Computational methods in solid state physics, CRC Press (1999).
7. D. S. Sholl, J. Steckel, Density Functional Theory: a practical introduction, John Wiley & Sons, Inc. (2009).
8. R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley-VCH (2005).

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. A. Koleżyński, “FP-LAPW study of anhydrous cadmium and silver oxalates: electronic structure and electron density topology”, Phys. B, 405 3650–3657 (2010); DOI: 10.1016/j.physb.2010.05.059.
2. J. Leszczyński, A. Koleżyński, K.T. Wojciechowski, “Electronic and transport properties of polycrystalline Ba8Ga15Ge31 type I clathrate prepared by SPS method”, J. Sol. State Chem., 193 114-121 (2012); DOI: 10.1016/j.jssc.2012.03.067.
3. W. Szczypka, P. Jeleń, A. Koleżyński, “Theoretical studies of bonding properties and vibrational spectra of chosen ladder-like silsesquioxane clusters”, J. Mol. Struct., 1075 599–604 (2014), DOI: 10.1016/j.molstruc.2014.05.037.
4. A. Koleżyński, P. Nieroda, K. T. Wojciechowski, “Li doped Mg2Si p-type thermoelectric material: theoretical and experimental study”, Comp. Mat. Sci., 100 84–88 (2015), DOI: 10.1016/j.commatsci.2014.11.015.
5. A. Mikuła, M. Król, A. Koleżyński, “The influence of the long-range order on the vibrational spectra of structures based on sodalite cage”, Spectrochim. Acta. A, 144 273–280 (2015), DOI: 10.1016/j.saa.2015.02.073.
6. P. Nieroda, A. Kolezynski, M. Oszajca, J. Milczarek, K. T. Wojciechowski, “Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2-xLixSi”, J. Electronic Mat., 45 3418-3426 (2016), DOI: 10.1007/s11664-016-4486-5.
7. A. Koleżyński, W. Szczypka, “First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X: Li, Na, Mg, Ca) Carbon Clathrates”, J. Electronic Mat., 45 1336–1345 (2016), DOI: 10.1007/s11664-015-4028-6.
8. A. Koleżyński, W. Szczypka, “Towards band gap engineering in skutterudites: The role of X4 rings geometry in CoSb3-RhSb3 system”, J. Alloys Compd., 691 299-307 (2017), DOI: 10.1016/j.jallcom.2016.08.235
9. E. Drożdż, A. Koleżyński, “The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3 – experimental and theoretical studies”, RSC Advances, 7 28898-28908 (2017), DOI: 10.1039/C7RA04205A.
10. J. Leszczyński, W. Szczypka, Ch. Candolfi, A. Dauscher, B. Lenoir, A. Koleżyński, “HPHT synthesis of highly doped InxCo4Sb12 – experimental and theoretical study”, J. Alloys Compd., DOI: 10.1016/j.jallcom.2017.08.194.

Informacje dodatkowe:

-