Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Numeryczne modelowanie CFD zagadnień cieplno-przepływowych
Tok studiów:
2019/2020
Kod:
ZSDA-3-0081-s
Wydział:
Szkoła Doktorska AGH
Poziom studiów:
Studia III stopnia
Specjalność:
-
Kierunek:
Szkoła Doktorska AGH
Semestr:
0
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Prowadzący moduł:
dr hab. inż. Jaszczur Marek (jaszczur@agh.edu.pl)
Dyscypliny:
inżynieria chemiczna, inżynieria materiałowa, inżynieria mechaniczna, inżynieria środowiska, górnictwo i energetyka
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

Obtaining professional knowledge about CFD modelling – for fluid flow and flow processes. The student will learn theory as well as get practical knowledge concerning GEOMETRY creation, MESH generation, SOVER set up, run and post-process the results – all practical skills based on professional ANSYS MULTIPHYSICS Software.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Student is able to explain heat and mass transfer processes typical for energy sector together with their mathematical description. SDA3A_W03 Odpowiedź ustna,
Egzamin
M_W002 Student is able to explain mathematical modelling need and computer simulation. Validate results SDA3A_U04, SDA3A_U01 Wykonanie ćwiczeń laboratoryjnych
Umiejętności: potrafi
M_U001 Student is able to use commercial software for simulation of heat and mass transfer processes typical for chemistry, engeneering and energy sector. Student is able to investigate of heat and mass transfer processes typical for industrial sector and design appropriate equipment. SDA3A_W03, SDA3A_U07 Wynik testu zaliczeniowego,
Wykonanie projektu,
Projekt
Kompetencje społeczne: jest gotów do
M_K001 Student can demonstrate her/his ability to take resposibility and collaborate with others when working in a team SDA3A_K01 Odpowiedź ustna,
Aktywność na zajęciach
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
60 30 0 30 0 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Student is able to explain heat and mass transfer processes typical for energy sector together with their mathematical description. + - + - - - - - - - -
M_W002 Student is able to explain mathematical modelling need and computer simulation. Validate results - - - - - - - - - - -
Umiejętności
M_U001 Student is able to use commercial software for simulation of heat and mass transfer processes typical for chemistry, engeneering and energy sector. Student is able to investigate of heat and mass transfer processes typical for industrial sector and design appropriate equipment. - - + - - - - - - - -
Kompetencje społeczne
M_K001 Student can demonstrate her/his ability to take resposibility and collaborate with others when working in a team + - + - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 158 godz
Punkty ECTS za moduł 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 60 godz
Przygotowanie do zajęć 30 godz
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 30 godz
Samodzielne studiowanie tematyki zajęć 30 godz
Egzamin lub kolokwium zaliczeniowe 2 godz
Dodatkowe godziny kontaktowe 2 godz
Inne 4 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (30h):
Introduction to CFD and Heat Transfer

1. Introduction, course overview, motivation, requirements, grades, basic information about CFD modelling, Introduction to ANSYS – WORKBENCH, Fundamental governing equations – continuity, momentum and energy,
2. How to calculate derivatives?
Introduction to ANSYS – Heat Transfer Steady Calculations
How to run Ansys Software, overview,
3. Solving a set of linear equations, DesingModeler – part 1, Geometry, PLANES, SKETCHES, Sketching toolboxes,
4. Solving of heat transfer equations, heat transfer equation, analytical solutions for the 1D heat equation with and without generation, numerical techniques for solving heat equation (steady, unsteady, with the generation, with convection), Numerical solution – Finite difference method – FDM, Methodology of solving CFD problems, DesingModeler – part 2
5. Boundary condition – numerical treatment, Mesh generation part 1
6. Heat transfer complex cases, – numerical treatment, Mesh generation part 2
7. SOLVER – ANSYS Fluent – heat transfer cases, boundary conditions, convection, radiation, complex wall model, shell conduction, parametric analysis, solving simple cases for heat conduction using Fluent.
8. SOLVER – ANSYS Fluent – unsteady heat transfer cases, How to performed transient calculations, How to performed axisymmetric calculations
9. SOLVER – ANSYS Fluent LAMINAR- fluid flow calculations, laminar fluid flow calculations, steady cases, grid refinement, different boundary conditions types, boundary layer calculations solving simple cases for laminar fluid flow using Fluent.
- How to performed fluid flow calculations for laminar cases
- How to performed automatic grid adaptation
- Parameters set-up, solutions monitoring, convergence, solution methods
10.SOLVER – ANSYS Fluent – Fluid flow – Turbulent fluid flow, equations, turbulence models, why we need models, how to choose proper model, wall treatment, convergence problem
11. SOLVER – ANSYS Fluent TURBULENT with Heat transfer- fluid flow and heat transfer calculations, turbulent fluid flow calculations, steady cases, grid refinement, turbulent non-isothermal boundary layer calculations solving simple cases for turbulent flat plate boundary layer using Fluent, Standard Wall Function, Enhanced Wall Treatment.
- How to performed fluid flow calculations for turbulent cases
- How to performed heat transfer and fluid flow calculations
- Wall Function for turbulence calculation, Enhanced Wall Treatment
12.SOLVER – ANSYS Fluent – Fluid flow – Radiation, radiative heat transfer, transparent, semi-transparent fluids, radiation models,
13.SOLVER – ANSYS Fluent – Advanced topics I, Rotating or moving frames, Static and dynamic Mesh
14. SOLVER – ANSYS Fluent – Advanced topics II, multiphase flows, reacting flows, compressible flows
15. SOLVER – ANSYS Fluent – Best practice, the best procedure in CFD, how to test, choice, and verify computation, how to perform good computation.

Ćwiczenia laboratoryjne (30h):
Introduction to CFD and Heat Transfer

1. Introduction, course overview, requirements, Solving fundamental governing equations – continuity, momentum and energy, Running ANSYS – WORKBENCH,
2. Derivatives calculation, Heat Transfer Steady Calculations using ANSYS
3. Numerical solution of a set linear equations, DesingModeler – part 1, Crating: Geometry, PLANES, SKETCHES, Sketching toolboxes,
4. Numerical solution for heat transfer equations, heat transfer equation, analytical solutions for the 1D heat equation with and without generation, numerical techniques for solving heat equation (steady, unsteady, with the generation, with convection), Numerical solution – Finite difference method – FDM, Methodology of solving CFD problems, DesingModeler – part 2
5. Numerical implementation of Boundary condition , Mesh generation part 1
6. Solving Heat transfer complex cases, – numerical treatment, Mesh generation part 2
7. Middle TERM TEST
8. SOLVER – ANSYS Fluent – heat transfer cases, boundary conditions, convection, radiation, complex wall model, shell conduction, parametric analysis, solving simple cases for heat conduction using Fluent.
9. SOLVER – ANSYS Fluent – unsteady heat transfer cases
10. SOLVER – ANSYS Fluent LAMINAR- fluid flow calculations, laminar fluid flow calculations, steady cases, grid refinement, different boundary conditions types, boundary layer calculations solving simple cases for laminar fluid flow using Fluent. parameters set-up, solutions monitoring, convergence, solution methods
11.SOLVER – ANSYS Fluent – Fluid flow – Turbulent fluid flow, equations, turbulence models, why we need models, how to choose proper model, wall treatment, convergence problem, fluid flow and heat transfer calculations, turbulent fluid flow calculations, steady cases, grid refinement, turbulent non-isothermal boundary layer calculations solving simple cases for turbulent flat plate boundary layer using Fluent, Standard Wall Function, Enhanced Wall Treatment.
- How to performed fluid flow calculations for turbulent cases
- How to performed heat transfer and fluid flow calculations
- Wall Function for turbulence calculation, Enhanced Wall Treatment
12.SOLVER – ANSYS Fluent – Fluid flow – Radiation, radiative heat transfer, transparent, semi-transparent fluids, radiation models,
13.SOLVER – ANSYS Fluent – Advanced topics I, Rotating or moving frames, Static and dynamic Mesh
14. SOLVER – ANSYS Fluent – Advanced topics II, multiphase flows, reacting flows, compressible flows
15. FINAL TEST

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: giving (transfer of knowledge); teaching concepts (teaches logical thinking); direct (focuses on procedural knowledge); seeking (creative problem solving, creating problem situations);
  • Ćwiczenia laboratoryjne: teaching by doing
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

The condition for admission to the final examination is passing the computer classes

The grade from computer classes will be issued on the basis of intermediate grades received during classes.It will be graded from colloquiums, projects carried out and oral answers. The most important will be the evaluation with MIDTERM TEST and FINAL TEST

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Nie
    – Zasady udziału w zajęciach: Participation in lectures is not obligatory, but the lectures will be unique and very practical. It is really difficult to access most of this information in the literature. The content will be presented on the traditional table and calculations and examples will be carried out online with only a small share of ready-made slides. The student will find on the course homepage only the abbreviation of the lecture and outline as well as the detailed content to be lectured. So that he/she can prepare himself on the basis of this information and given literature. However, this will require using a large number of literature positions.
  • Ćwiczenia laboratoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: participation in computer classes is compulsory. A student who, without justification, was absent more than 2 participation in computer classes is compulsory. A student who, without justification, was absent more than 2 times may not be prevented from taking the exam.
Sposób obliczania oceny końcowej:

Grading:
Grading formula: FG=PMWFwcolloq*w*PMGwcolloq+ PMWFcrlexer*w*PMGcrlexer+ AC
Where:
• FG-final grade
• PMWFwcolloq – Written colloquium part weighting factor – 0,5
• PMGwcolloq – Grade of achieved LOs written colloquium
• PMWFcrlexer – Colloquium and report from laboratory exercises part weighting factor – 0,5
• PMGcrlexer – Grade of achieved LOs relevant to project

W = 1 for first evaluation deadline, w =0.9 for 1st retake , w=0.8 for 2nd retake.

For activity during lectures and laboratories student May obtain AC (points for activity).
AC = 0 – 0.5
All LO weighting factors associated with part of the module (PM) equal 1.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

When student will fail the course part also because of absence on the one or two exercises it will be possible to get additional project in order to improve the grade.

Student should attend all laboratory exercises. In justified cases, two absences are possible.
More absences may result in failure to pass the course

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Elementary knowledge of heat transfer, fluid mechanics and numerical methods
Software knowledge is not required

Zalecana literatura i pomoce naukowe:

0. Course materials
1.ANSYS FLUENT – Tutorials
2.H.K. Versteeg, W. Malalasekera An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Pearson Education Ltd. 2007
3.J.Tu, G.H. Yeoh, Ch. Liu Computational Fluid Dynamics, A Practical Approach, Elsevier 2008,
4.J.H. Ferzinger, M. Perić, Computational Methods for Fluid Dynamics, 2ed, Springer, 1999

Additional
1. Chapra, Canale, “Numerical methods for engineering”
2. A. Kaw, E. Eric Kalu, “Numerical Methods with Applications”
3. CHAPRAL, “Applied Numerical Methods MATLAB: for Engineers”
4. M. Ozisik, M. Czisik, N. Ozisik, “Finite Difference Methods in Heat Transfer”

Literature: ANSYS Manual
ANSYS DesignModeler Manuals i Tutorials
Literature: Best books in Heat transfer
1. Cengel Y, Ghajar A. „Heat & Mass Transfer: A Practical Approach”
2. J P Holman „Heat Transfer”
3. Frank P. Incropera „Fundamentals of Heat and Mass”

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. M. JASZCZUR, Effective feedback as a way to improve the quality of teaching, W: EDULEARN18 : 10th international conference on Education and new learning technologies : Palma (Spain), 2nd–4th of July, 2018 : proceedings, ed. by L. Gómez Chova, A. López Martínez, I. Candel Torres. — IATED Academy, cop. 2018. — (EDULEARN Proceedings). — e-ISBN: 978-84-09-02709-5. — S. 7921–7927.

2. Marek JASZCZUR, Qusay HASSAN, Mateusz SZUBEL, Ewelina Majewska, Fluid flow and heat transfer analysis of a photovoltaic module under varying environmental conditions, Journal of Physics. Conference Series ; ISSN 1742-6588. — 2018 vol. 1101 art. no. 012009, s. 1–8

3. M. JASZCZUR, I. POLEPSZYC, B. Biernacka, A. SAPIŃSKA-ŚLIWA, A numerical model for ground temperature determination, Journal of Physics. Conference Series ; ISSN 1742-6588. — 2016 vol. 745 art. no. 032007, s. 1–8

4. Robert Hanus, Marcin ZYCH, Marek JASZCZUR, Computational intelligence approach for liquid-gas flow regime classification based on frequency domain analysis of signals from scintillation detectors, Advances in computational intelligence : 15th International Work-Conference on Artificial Neural Networks : IWANN 2019

5. Marek JASZCZUR, Marcin ZYCH, Robert Hanus, Direct numerical simulation of the passive heat transfer in a turbulent flow with particle, EPJ Web of Conferences ; ISSN 2101-6275. — 2017 vol. 143, art. no. 02046, s. 1–6.

6. Marek JASZCZUR, Inga POLEPSZYC, Aneta SAPIŃSKA-ŚLIWA, Andrzej GONET, An analysis of the numerical model influence on the ground temperature profile determination, Journal of Thermal Science ; ISSN 1003-2169. — 2017 vol. 26 no. 1, s. 82–88

7. Tomasz ŚLIWA, Marek JASZCZUR, Andrzej GONET, Analiza numeryczna wpływu własności górotworu na transport ciepła wokół otworowego wymiennik ciepła — Numerical analysis of the rock properties effect on the heat transport around borehole heat exchanger, SWCIM – 2010 : materiały XIV Sympozjum Wymiany Ciepła i Masy

8. Inga POLEPSZYC, Michał DUDEK, Marek JASZCZUR , Analiza pola temperatury gruntu przy wykorzystaniu różnych modeli pogodowych — [An analysis of the ground temperature based on the different weather models, Współczesne problemy ochrony środowiska III

9. Marek JASZCZUR, Inga POLEPSZYC, Aneta SAPIŃSKA-ŚLIWA, Andrzej GONET, An analysis of the numerical model influence on the ground temperature profile determination, ICCHMT 2016 : IX International Conference on Computational Heat and Mass Transfer : 23–26 May 2016, Cracow, Poland

10. M. DUDEK, J. Podsadna, M. JASZCZUR, An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity, W: EUROTHERM-2016 : 7th European Thermal-Sciences Conference : Krakow, Poland, 19–23 June 2016

11. Marek JASZCZUR , A numerical analysis of the fully developed non-isothermal particle laden turbulent channel flow, W: KKMP 2010, XIX Krajowa Konferencja Mechaniki Płynów

12. M. JASZCZUR, A numerical simulation of the passive heat transfer in a particle-laden turbulent flow, DLES 8 : ERCOFTAC workshop : Direct and Large-Eddy Simulation 8 : Eindhoven, The Netherlands, July 7–9, 2010

13.M. JASZCZUR, DNS benchmark solution of the fully developed turbulent channel flow with heat transfer, Journal of Physics. Conference Series ; ISSN 1742-6588. — 2014 vol. 530, s. 012022-1–012022-8. — Bibliogr. s. 012022-8

14. M. BRANNY, M. JASZCZUR, W. WODZIAK, J. SZMYD, Experimental and numerical analysis of air flow in a dead-end channel, Journal of Physics. Conference Series ; ISSN 1742-6588. — 2016 vol. 745 art. no. 032045, s. 1–8

15. Qusay HASSAN, Marek JASZCZUR, Estera PRZENZAK, Mathematical model for the power generation from arbitrarily oriented photovoltaic panel, Energy and fuels 2016 : Kraków, 21–23 September 2016

16. M. JASZCZUR, Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow, Archives of Mechanics ; ISSN 0373-2029. — 2011 vol. 63 iss. 1, s. 77–91. — Bibliogr. s. 90–91

17. Marek JASZCZUR, Inga POLEPSZYC, Aneta SAPIŃSKA-ŚLIWA, Numerical analysis of the boundary conditions model impact on the estimation of heat resources in the ground, Polish Journal of Environmental Studies ; ISSN 1230-1485. — 2015 vol. 24 no. 5A, s. 60–66.

18. Marek JASZCZUR, Numerical modeling of the fluid-particle interactions in non-isothermal turbulent channel flow with dispersed phase — Modelowanie numeryczne oddziaływania płyn-cząstka w turbulentnym nieizotermicznym przepływie z fazą dyspersyjną, Kraków : Wydawnictwa AGH, 2013. — 175, 1 s.. — (Rozprawy Monografie / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie ; ISSN 0867-6631 ; 282)

Informacje dodatkowe:

When student will fail the project part also because of absence on the one or two exercises it will be possible to get additional project in order to improve the grade.

Student should attend all laboratory exercises. In justified cases, two absences are possible.
More absences may result in failure to pass the course