Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Metoda elementów skończonych w inżynierii materiałowej i przeróbce plastycznej metali
Tok studiów:
2019/2020
Kod:
ZSDA-3-0107-s
Wydział:
Szkoła Doktorska AGH
Poziom studiów:
Studia III stopnia
Specjalność:
-
Kierunek:
Szkoła Doktorska AGH
Semestr:
0
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Prowadzący moduł:
prof. dr hab. inż. Milenin Andriy (milenin@metal.agh.edu.pl)
Dyscypliny:
informatyka, inżynieria materiałowa
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

FEM is presented on the basis of its use in metal forming and material engineering. Examples of industrial applications, theoretical and programmatic aspects are discussed.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Knows the basis of interpolation in FEM, definition of shape functions, the types of most commonly used finite elements. SDA3A_W01
M_W002 Knows the definitions of stiffness matrix and load vector, the principle of obtaining solutions in FEM. SDA3A_W03
M_W003 Know the basics of the solution with help of FEM the heat exchange and elasticity problems SDA3A_W03
Umiejętności: potrafi
M_U001 The student can use the shape functions to interpolate the parameters in the nodes in volume of the finite element. SDA3A_U01
M_U002 A student can write a simple program for solving with the help of FEM the problem of non-stationary heat flow. SDA3A_U01
M_U003 Student has the skills to apply commercial programs based on the FEM (Qform) SDA3A_U01
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
60 30 0 30 0 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Knows the basis of interpolation in FEM, definition of shape functions, the types of most commonly used finite elements. + - + - - - - - - - -
M_W002 Knows the definitions of stiffness matrix and load vector, the principle of obtaining solutions in FEM. + - + - - - - - - - -
M_W003 Know the basics of the solution with help of FEM the heat exchange and elasticity problems + - + - - - - - - - -
Umiejętności
M_U001 The student can use the shape functions to interpolate the parameters in the nodes in volume of the finite element. - - - - - - - - - - -
M_U002 A student can write a simple program for solving with the help of FEM the problem of non-stationary heat flow. - - - - - - - - - - -
M_U003 Student has the skills to apply commercial programs based on the FEM (Qform) - - - - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 117 godz
Punkty ECTS za moduł 5 ECTS
Udział w zajęciach dydaktycznych/praktyka 60 godz
Przygotowanie do zajęć 20 godz
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 10 godz
Samodzielne studiowanie tematyki zajęć 20 godz
Egzamin lub kolokwium zaliczeniowe 2 godz
Dodatkowe godziny kontaktowe 5 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (30h):
  1. Introduction to FEM

    History of FEM. Usage FEM in metal forming and material engineering. Industrial exemples application of FEM. Basic conception of FEM. Interpolation in FEM, definition of shape functions. 4h.

  2. FEM technics

    Finite elements of higher order. Isoparametric transformation. Usage of local coordinat systems in FEM. Jacobi matrix. Numerical integration. 4h.

  3. Solving the heat flow problems by FEM

    Steady state and non steady state heat flow problems. Equations for stiffness matrix and load vector. Two dimensional FEM code for simulation of non steady state heat flow. 4h.

  4. Solution of elastic problems by FEM

    Basics of theory of elasticity. Variation principle of theory of elasticity. Equations for stiffness matrix and load vector. Example of two dimensional FEM code for solving plain strain problem by FEM. Usage FEM code for topology optimization. 6h

  5. Solution of rigid plastic problems by FEM.

    Theory of plasticity of non compressible materials. Variational principle. Equations for stiffness matrix and load vector. Example of FEM code for simulation of plain strain problem in flow formulation. Analogy between flow dynamic and theory of plasticity in flow formulation. 6h.

  6. Commertional FEM code Qform for simulation of hot metal forming processes.

    Theoretical basics of Qform FEM program. Structure and interface of Qform. Simulation of forging, shape rolling and extrusion in Qform. Implementation of advanced material models in Qform. Lua scripts in Qform. Implementation of flow stress and fracture models in Qform. Examples of industrial applications of Qform for design of metal forming technologies. 4h

  7. Summary of course.

    Industrial examples of usage FEM in research for metal forming and material engineering. 2h

Ćwiczenia laboratoryjne (30h):
  1. Development of a program for modeling non-stationary heat flow.

    Presentation of main modules of FEM program for simulation of heat flow problems, equations for stiffness matrix and load vector. Usage of Paraview program for visualisation of results. Numerical experiments: influence of FEM grid density to results of simulation. (6).

  2. Development of a program for modeling of elasticity problem.

    Presentation of main modules of FEM program for simulation of elasticity, equations for stiffness matrix and load vector. Usage of Paraview program for visualisation of results. Numerical experiments: influence of FEM grid density to results of simulation. Comparison of numerical results with analitical solution. (6).

  3. Usage of Qform program for simulation of rigid-plastic problems

    Motivation for simulation of metal forming processes using rigid-plastic approach. Data, needed for simulation. Flow stress models. Boundary conditions – friction, heat transfear, geometry. Numerical parameters of simulation. (4)

  4. Topology optimisation

    Modification of FEM code for topology optimisation (generative design). Numerical example: optimization of beam shape (2)

  5. Usage Qform for simulation of elastic-plastic deformation.

    Motivation for simulation of metal forming processes using elastic-plastic approach. Problems of residual stresses, springback, termal stresses. Data, needed for simulation. Flow stress models. Elasticity parameters of material. Boundary conditions – friction, heat transfear, geometry. Numerical parameters of simulation. Example – simulation of flow forming processes (6)

  6. Programming in Qform program.

    Usage of LUA scripts for simulation of flow stress, ductility, microstructure. Debug of *.lua module. (6)

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Ćwiczenia laboratoryjne: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Presented by a teacher at the first lecture of the semester

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Ćwiczenia laboratoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.
Sposób obliczania oceny końcowej:

Final grade = 0.6 Evaluation on the exam + 0.4 Evaluation in the practical classes.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Presented by a teacher at the first lecture of the semester

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Programming in C++ or Fortran.
Numerical methods.
Basic knowlege in metal forming, mechanics, material engineering.

Zalecana literatura i pomoce naukowe:

1. Milenin A. Basics of FEM. Thermomechanical problems // AGH, 2010 (in Polish).
2. O.C.Zienkiewicz, R.L.Taylor The Finite Element Method // Butterworth Heinemann, 3 vol, 5-th Edition, London, 2000
3. K.J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice Hall Inc.
4. Segerlind L. J., Applied Finite Element Analysis // J. Wiley & Sons, New York, 1976, 1984, 1987, 427 pp. ISBN 0-471-80662-5.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. Andrij Milenin, Piotr Kustra, Tsuyoshi Furushima, Peihua Du, Jiří Němeček Design of the laser dieless drawing process of tubes from magnesium alloy using FEM model // Journal of Materials Processing Technology, 2018, 262, 65-74
2. A. MILENIN, P. KUSTRA, D. BYRSKA-WÓJCIK FEM-BEM code for the multiscale modeling and computer aided design of wire drawing technology for magnesium alloys // Advanced Engineering Materials ; ISSN 1438-1656. — 2014 vol. 16 iss. 2, p. 202–210.
3. A Milenin, P Kustra, D Byrska-Wójcik, M Pietrzyk Numerical prediction of fracture during manufacturing of thick wall tubes from low ductility steels in flow forming process, 2015,Computer Methods in Materials Science 15 (4), 469-480
4. A. MILENIN, M. KOPERNIK Multiscale FEM model of artificial heart chamber composed of nanocoatings // Acta of Bioengineering and Biomechanics ; 2009 vol. 11 no. 2, p. 13–20

Informacje dodatkowe:

Brak