Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Advanced liquid biofuels
Tok studiów:
2019/2020
Kod:
STCH-2-206-ET-s
Wydział:
Energetyki i Paliw
Poziom studiów:
Studia II stopnia
Specjalność:
Energy Transition-KIC
Kierunek:
Technologia Chemiczna
Semestr:
2
Profil:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma studiów:
Stacjonarne
Strona www:
 
Prowadzący moduł:
dr inż. Janus Rafał (rjanus@agh.edu.pl)
Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

The course has a research character and concerns the information on the modern technologies of biofuels production and the basic analysis of physicochemical properties of the liquid fuels.

Opis efektów uczenia się dla modułu zajęć
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Powiązania z KEU Sposób weryfikacji i oceny efektów uczenia się osiągniętych przez studenta w ramach poszczególnych form zajęć i dla całego modułu zajęć
Wiedza: zna i rozumie
M_W001 Student has knowledge on liquid fuel quality specification in respect to the engines, and in respect to environment. TCH2A_W01 Wynik testu zaliczeniowego,
Aktywność na zajęciach
M_W002 Student has knowledge on methods of conversion of diverse biomass feedstocks into liquids, has knowledge in the field of novel technologies of advanced biomass processing. TCH2A_W01, TCH2A_W02 Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium,
Aktywność na zajęciach
Umiejętności: potrafi
M_U001 Student is able to use optimization methods and solve practical problems in the field of motor fuel blending. TCH2A_U01 Projekt
M_U002 Student is able to plan and carry out experiments in chemical laboratory, and interpret the obtained results and formulate conclusions. Student is able to work individually and in a team, carrying out various functions, using English language TCH2A_U02, TCH2A_U01 Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium,
Aktywność na zajęciach
Kompetencje społeczne: jest gotów do
M_K001 Student understands the need for additional training and improvement his/her professional and personal competence in respect to fuel/energy sector. TCH2A_K02 Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium,
Aktywność na zajęciach
M_K002 Student is aware of the importance and understanding of the effects of non-technical aspects and results of engineering activities of biofuels production and practical employment, especially in respect to environment and socioeconomic aspects. TCH2A_K01, TCH2A_K02 Wykonanie ćwiczeń laboratoryjnych,
Zaliczenie laboratorium,
Aktywność na zajęciach
Liczba godzin zajęć w ramach poszczególnych form zajęć:
SUMA (godz.)
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
45 10 0 20 15 0 0 0 0 0 0 0
Matryca kierunkowych efektów uczenia się w odniesieniu do form zajęć i sposobu zaliczenia, które pozwalają na ich uzyskanie
Kod MEU Student, który zaliczył moduł zajęć zna i rozumie/potrafi/jest gotów do Forma zajęć dydaktycznych
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Prace kontr. przejść.
Lektorat
Wiedza
M_W001 Student has knowledge on liquid fuel quality specification in respect to the engines, and in respect to environment. + - + + - - - - - - -
M_W002 Student has knowledge on methods of conversion of diverse biomass feedstocks into liquids, has knowledge in the field of novel technologies of advanced biomass processing. + - + + - - - - - - -
Umiejętności
M_U001 Student is able to use optimization methods and solve practical problems in the field of motor fuel blending. - - + + - - - - - - -
M_U002 Student is able to plan and carry out experiments in chemical laboratory, and interpret the obtained results and formulate conclusions. Student is able to work individually and in a team, carrying out various functions, using English language + - + + - - - - - - -
Kompetencje społeczne
M_K001 Student understands the need for additional training and improvement his/her professional and personal competence in respect to fuel/energy sector. + - + + - - - - - - -
M_K002 Student is aware of the importance and understanding of the effects of non-technical aspects and results of engineering activities of biofuels production and practical employment, especially in respect to environment and socioeconomic aspects. + - + - - - - - - - -
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 90 godz
Punkty ECTS za moduł 3 ECTS
Udział w zajęciach dydaktycznych/praktyka 45 godz
Przygotowanie do zajęć 15 godz
przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania 15 godz
Samodzielne studiowanie tematyki zajęć 15 godz
Szczegółowe treści kształcenia w ramach poszczególnych form zajęć (szczegółowy program wykładów i pozostałych zajęć)
Wykład (10h):

Lecture
Overview

The goal of the course is to present the outline of the contemporary used unconventional feedstock and the modern technologies of its processing towards sustainable biofuels as well as other valuable bioproducts useable for the energy and fuel sector. This scientific field will be presented comprehensively to the conventional resources and petroleum-based fuels. The overall objective of the course is to present to the students the main issues of conventional and modern, renewable fuels in view of both, environmental and economic aspects. The field of the course involves an interdisciplinary approach in which the students combine the knowledge in the topics of organic chemistry, physical chemistry, chemical engineering, analytical chemistry, the elements of biochemistry, molecular spectroscopy, and the environmental sciences.
The laboratory part of this course has research character and is aimed to get the students closer to the basis of the modern fuel laboratory techniques and procedures. It envelops the information on the modern technologies of biofuels production and the basic analysis of physicochemical properties of the liquid fuels. The students have the opportunity to develop their laboratory manual skills (i.e. working with basic glass, transfer the chemicals, weighing, volume measuring and the work with advanced apparatus designed for physicochemical measurements). This, in turn, creates the possibility to transform the practical experiences into the solution of the practical problems (i.e. research challenges).
As the exercises (tasks) planned to be executed during lab and project classes will be presented in the form of a problem to be solved. Therefore, the course also enables to develop the entrepreneurial attitudes.
Furthermore, the course is aimed to employ the extensive cross-disciplinary knowledge in the development of pivotal soft skills, which are crucial for the implementation of the new trends in the industry practice.

Scope of the lecture

1. Introduction lecture.
a. The scope of the course and rules (requirements) of its completion.
b. The role of liquid fuels in the transport and energy sector: global energy consumption, trends, prospectives including the development of unconventional fossil feedstock.
c. Fossil fuels for transport sector – short review: types, characterization, production, requirements, exploitation, environmental impact, advantages and disadvantages (brainstorming – development of students creativity skills and competencies – Oxford discussion).
2. Biomass and waste as unconventional and renewable feedstock for sustainable production of modern alternative fuels.
a. Biogenic resources: types, biochemical composition (proteins, lipids, carbohydrates, fibres), structure, cultivation, resources, crop plants, energy density, (short brainstorming/Oxford discussion – food market vs. biofuel production – pros and cons).
b. Waste resources: origin – biogenic/fossil (industrial, agricultural, municipal), available resources, chemical composition, energy density.
c. Biogenic vs. waste – brainstorming & recapitulation.
3. Classification of biofuels generations. First generation biofuels.
a. Gasoline biocomponents: types (alcohols, ethers), feedstock, the technology of production, the chemistry of the process, processing variables. Physicochemical properties, performance, and emission, influence on energetic value. Economic aspects.
b. Diesel biocomponents: types (FAME, FAEE, vegetable oils), feedstock, the technology of production, the chemistry of the process, processing variables. Physicochemical properties, performance, and emission, influence on energetic value. Economic aspects.
c. First generation biofuels – pros and cons – critical discussion.
4. Thermochemical processing of unconventional feedstock towards higher generations biofuels.
a. Conversion technologies.
b. Types and characteristics of bioproducts: gas, liquid, solid – chemical composition and properties. Upgrading and possible applications.
c. Innovation vs. feasibility – biofuels in practice – creativity (i.e. discussion on the topic of energy output/energy input, scaling-up, the necessity of special feedstock pretreatment, energy-consuming refining, the possibility of integration of new plants with the existing ones).
5. Chemical and biochemical processing of unconventional feedstock.
a. Conversion technologies.
b. Types and characteristics of bioproducts: gas, liquid, solid – chemical composition and properties. Upgrading and possible applications.
c. Innovation vs. feasibility – biofuels in practice – creativity (i.e. discussion on the topic of energy output/energy input, scaling-up, the necessity of special feedstock pretreatment, energy-consuming refining, the possibility of integration of new plants with the existing ones).
d. General recapitulation and forecast: biofuels technology – what next? Individual student’ point of view – discussion.
6. Short open-question exam.

Ćwiczenia laboratoryjne (20h):

Laboratory classes
The students work in 3–5 – members teams (i.e. 3 teams in one lab group). Each team chooses a leader, who is responsible for the report of the achieved results and the laboratory equipment used during the lab classes. Prior to the classes, the professor carries out with the students a short discussion in order to check their overall knowledge concerning the topic of the task to be performed during the lab classes. For this purpose, the students should read a few (3-5) recent research papers found by their self in one of the scientific databases available via the university library (Scopus, ScienceDirect etc.).

Each group carries out four experiments as follows:

1. The preparation of biodiesel by transesterification of various fats and chosen alcohol over the homogeneous base catalyst and subsequent separation, neutralization and refining of the product.
2. The analysis of selected physicochemical parameters of the obtained biodiesel (i.e. viscosity, flash point, and cloud point) comparatively to petrodiesel.
3. The determination of the impact of the amount of alcoholic biocomponent on the volatility of motor gasoline. The determination of the concentration of alcohols and ethers in motor gasoline.
4. Study on the influence of the amount of alcoholic biocomponent on the resistance to autoignition (octane number) determined approximately based on the FT-IR spectrum. Interpretation of qualitative composition of gasoline (FT-IR).
After completing the lab classes, each team prepares a short summary report comprising the detailed description of the experimental section, results and discussion with the prospective suggestions of the modification of the exercise. The discussion has to be referred to the relevant scientific literature references. The template of the report will be provided by the professor and the procedure of report preparation will be explained in details. Such form of the preparation of the report is intended to develop the creativity of the students (brainstorming during the discussion on the achieved results) and to improve their skill in terms of the writing of scientific reports (i.e. engineer/master/doctoral theses as well as the professional reports and/or the original research papers in their professional career).

Ćwiczenia projektowe (15h):

Project classes
The students work in two-member teams. Each team chooses a leader, who is responsible for the report of the achieved results and to shortly summarize the results to the professor.
The project classes are divided into two parts. The first one is devoted to the introduction on the topic of blending of the common liquid fuels utilized for fuelling of spark and compression ignition combustion engines, as follows: (i) additive and non-additive motor fuel properties, (ii) linear programming for fuel blending, and (iii) various mixing rules along with correlation used to estimate the fuel blend properties.
The second part of the classes is intended as an individual case study to be solved by each team. The teams attempt to optimize the blending procedure of conventional and alternative fuels employing the optimization procedure proposed (and explained prior to the challenge) by the professor.
After preparing the individual computational projects, the students have to defend their proposal of the solution of a given case. This part is aimed to develop the entrepreneurship thinking and team leader competencies.

Pozostałe informacje
Metody i techniki kształcenia:
  • Wykład: Treści prezentowane na wykładzie są przekazywane w formie prezentacji multimedialnej w połączeniu z klasycznym wykładem tablicowym wzbogaconymi o pokazy odnoszące się do prezentowanych zagadnień.
  • Ćwiczenia laboratoryjne: W trakcie zajęć laboratoryjnych studenci samodzielnie rozwiązują zadany problem praktyczny, dobierając odpowiednie narzędzia. Prowadzący stymuluje grupę do refleksji nad problemem, tak by otrzymane wyniki miały wysoką wartość merytoryczną.
  • Ćwiczenia projektowe: Studenci wykonują zadany projekt samodzielnie, bez większej ingerencji prowadzącego. Ma to wykształcić poczucie odpowiedzialności za pracę w grupie oraz odpowiedzialności za podejmowane decyzje.
Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

Zasady udziału w zajęciach:
  • Wykład:
    – Obecność obowiązkowa: Nie
    – Zasady udziału w zajęciach: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego.
  • Ćwiczenia laboratoryjne:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.
  • Ćwiczenia projektowe:
    – Obecność obowiązkowa: Tak
    – Zasady udziału w zajęciach: Studenci wykonują prace praktyczne mające na celu uzyskanie kompetencji zakładanych przez syllabus. Ocenie podlega sposób wykonania projektu oraz efekt końcowy.
Sposób obliczania oceny końcowej:

Grading formula:
FG = w*PMWFexam*PMGexam + w*PMWFlab*PMGlab + w*PMWFproj*PMGproj + PMWFact,
where:
FG – final grade;
PMWFexam – exam (test) part; weighing factor = 0.50;
PMWFlab – laboratory exercises part; weighing factor = 0.25;
PMWFproj – project part; weighing factor = 0.25;
PMGexam – grade of achieved LOs relevant to exam (test);
PMGlab – grade of achieved LOs relevant to laboratory exercises;
PMGproj – grade of achieved LOs relevant to project;
PMWFact – students activity during lectures and laboratory part; weighing factor = 0 – 0.50;
w – factor depending on the number of retake of joining the completion of course; w = 0.9 (for 1st retake); w = 0.8 (for 2nd retake); w = 0.8 (for 3rd retake).
All the LOs weighing factors associated with each part of the module (PM) equal 1.00.

Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach:

Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności modułów :

Prerequisites
Basic knowledge in the field of the following sciences: organic chemistry, physical chemistry, chemical engineering, analytical chemistry, the elements of biochemistry, molecular spectroscopy, and the environmental sciences.

Zalecana literatura i pomoce naukowe:

Recommended literature
1. A.R.K. Gollakota, N. Kishore, S. Gu, A review on hydrothermal liquefaction of biomass, Renew. Sustain. Energy Rev. 81 (2018) 1378–1392. doi:10.1016/j.rser.2017.05.178.
2. J.A. Ramirez, R.J. Brown, T.J. Rainey, A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels, Energies. 8 (2015) 6765–6794. doi:10.3390/en8076765.
3. A. V. Bridgwater, Principles and practice of biomass fast pyrolysis processes for liquids, J. Anal. Appl. Pyrolysis. 51 (1999) 3–22. doi:10.1016/S0165-2370(99)00005-4.
4. B. Patel, M. Guo, A. Izadpanah, N. Shah, K. Hellgardt, A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing, Bioresour. Technol. 199 (2016) 288–299. doi:10.1016/j.biortech.2015.09.064.
5. A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester, Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy Environ. Sci. 1 (2008) 32–65. doi:10.1039/b810100k.
6. Ch. Len, R. Luque, Continuous flow transformations of glycerol to valuable products: an overview, Sustainable Chemical Processes 2 (2014) 1–10. doi:10.1186/2043-7129-2-1.
7. B. Akash, Thermochemical depolymerization of biomass, Procedia Comput. Sci. 52 (2015) 827–834. doi:10.1016/j.procs.2015.05.139.
8. L.C. Meher, D.V. Sagar, S.N. Naik, Technical aspects of biodiesel production by transesterification – a review, Renew. Sustain. Energy Rev. 10 (2006) 248–268. doi:10.1016/j.rser.2004.09.002.
9. Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306. doi:10.1016/j.biotechadv.2007.02.001.
10. F. Ma, M.A. Hanna, Biodiesel production : a review, Bioresour. Technol. 70 (1999) 1–15.
11. A.K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci. 33 (2007) 233–271. doi:10.1016/j.pecs.2006.08.003.
12. S. Parkash, Petroleum fuels manufacturing book, 1st ed., The McGraw-Hill, New York, 2010, ISBN-13: 978-0071632409.
13. M. Fahim, T. Al-Sahhaf, A. Elkilani, Fundamentals of petroleum refining, 1st ed., Elsevier Science, 2010, ISBN: 9780444527851.
14. Green Chemistry for sustainable biofuel production, ed. V.G. Gude, CRC Press, 2018.

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

1. M. Wądrzyk, M. Berdel, R. Janus, D.W.F. Brilman, Hydrothermal processing of pine wood: effect of process variables on bio-oil quality and yield, Konferencja Naukowa Energetyka i Paliwa, Kraków 2018, proceedings, E3W 2018 (in press).
2. R. Janus, K. Kołomański, M. Wądrzyk, M. Lewandowski, Degradation of petroleum diesel fuel accelerated by UV irradiation: the impact of ageing on chemical composition and selected physicochemical properties, Konferencja Naukowa Energetyka i Paliwa, Kraków 2018, proceedings, E3W 2018 (in press).
3. D.W.F. Brilman, N. Drabik, M. Wądrzyk, Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp, Biomass Convers. Biorefinery. 7 (2017) 445–454. doi:10.1007/s13399-017-0241-2.
4. M. Wądrzyk, R. Janus, M.P. Vos, D.W.F. Brilman, Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae, J. Anal. Appl. Pyrolysis. 134 (2018) 415–426. doi:https://doi.org/10.1016/j.jaap.2018.07.008.
5. M. Wądrzyk, R. Janus, J. Jakóbiec, Liquefaction of waste organic matter towards bio oil in subcritical water, Przem. Chem. 96 (2017) 1913–1918. doi:10.15199/62.2017.9.19.
The exemplary master theses
6. Investigation of oxidation processes of fossil diesel fuel under the influence of UV irradiation: the effect of degradation on selected physicochemical properties (supervised by Rafał Janus, PhD. Eng.).
7. Investigation on the thermal transformations of waste biomass during pyrolysis: effect reaction atmosphere (supervised by Rafał Janus, PhD. Eng.).
8. Fractionation and upgrading of biocrude from hydrothermal processing (supervised by Mariusz Wądrzyk, PhD. Eng.)
9. Hydrothermal liquefaction of biomass: Effects of mixed feedstock on product distribution and composition (supervised by Mariusz Wądrzyk, PhD. Eng.)
10. Reactivity of biochar with CO2 using thermogravimetric analysis (supervised by Mariusz Wądrzyk, PhD. Eng.)
11. Investigation on the thermal transformations of waste biomass during pyrolysis: effect of heating rate (supervised by Mariusz Wądrzyk, PhD. Eng.)

Informacje dodatkowe:

Additional information
The overall assessment consist of two steps:
Assessment of fulfilling of module learning outcomes and OLOs.
Assessment and grading of the quality of students work.
EIT OLOs assessed in the industrial internship:
• Making value judgments and sustainability competencies (EIT OLO 1)
• Entrepreneurship skills and competencies (EIT OLO 2)
• Creativity skills and competencies (EIT OLO 3)
• Research skills and competencies (EIT OLO 5)
• Intellectual transforming skills and competencies (EIT OLO 6)
• Leadership skills and competencies (EIT OLO 7)
The Method of assessments indicated in point description of learning outcomes for modules includes an assessment of learning outcomes and OLOs.
The student is obligated to carry out all laboratory exercises provided in the program. After the absence in laboratory classes, the student needs to participate in classes with a different group (if possible) or during additional classes at the end of the semester. A student who missed more than two compulsory classes and his grades were negative may not graduate the course. In addition, the detailed information on the implementation of the module will be provided at the first classes.